
inDEPTH
Linux Storage Management

30 LINUX+DVD 3/2009

inDEPTH
Linux Storage Management

31www.lpmagazine.org/en

Linux Storage
Management
For years now I have been working in the data storage industry, offering various services which
include development and consultation. With regards to consultation, the services extend to storage
customization, configuration and performance tuning.

Petros Koutoupis

During these instances I have taken
notice, that while I work with extremely
intelligent individuals, the education
is still somewhat lacking in how the

operating system manages the storage volumes and
how to tune all aspects relating to this topic for the
ideal computing environment. This in turn can lead to
disastrous results.

The purpose of this article is to define some of
the basics of all the layers involved in Linux 2.6
storage management along with key concepts to
be aware of with regards to decision making and
performance tuning. The idea is to give the reader
a better insight into analyzing the environment that
they are configuring the storage for and to be able to
understand the I/O profile that it is supposed to cater
to. This article will in turn be partitioned into the
following main topics: (1) the outline of the I/O and
SCSI Subsystems, (2) followed by a summary of how
the storage is presented to the host, (3) and finally,
real world methods of configuring and tuning your
environment.

What is I/O and How Do
I Determine my I/O Profile?
In order to fully understand the following material,
it becomes necessary to cover the basics of I/O and
I/O management. In general the concept of I/O (or
Input/Output) is the ability to perform an input and/or
output operation between a computer and a device. That
device could be a keyboard or mouse functioning as
input devices. It could also be an output device such as
a monitor updating the coordinates of the mouse cursor
based on user input. With regards to data storage, when
I/O is spoken of, it usually signifies the input and output
streams of data to a disk device (a.k.a block device).

A block device is a device (i.e Hard Disk Drive,
CD-ROM, floppy, et.c) that can host a file system and/or
store non-volatile data. In most modern day computing
systems, a block device can only handle I/O operations
that transfer one or more whole blocks (or sectors),
which are usually 512 bytes (or a larger power of two)
in length. A block device can be accessed through a file
system node mounted locally or networked and shared or
through the physical device interface. The advantages to

inDEPTH
Linux Storage Management

30 LINUX+DVD 3/2009

inDEPTH
Linux Storage Management

31www.lpmagazine.org/en

utilizing a file system is to add organization
in the storing of data so that it can be
readable by both the user and the OS (with
a corresponding application). File systems
have become so advanced that there are
numerous features written into the modules
enabling the user to manage a redundant
and/or high performing environment.
Without the file system, the physical device
would be a series of unintelligible sequence
of byte values. There wouldn't be any meta-
data to identify the location of files including
file specific information such as file size,
permissions, etc.

Moving back to I/O. There are numerous
ways to initiate an I/O process to a storage
device. To keep this as simple as possible we
will not get into great depth in those details.
Just note that the basic steps an application
usually uses to generate I/O between the
application layer of the Operating System
and the end storage device are:

• Open the device or file.
• Set the location from which to read or

write.
• Execute the read or write operation.
• Repeat steps 2 and 3 as needed.
• Close the device or file.

Although these steps may seem a little
simplistic, note that many variables are used
to define how an I/O operation is performed.
These variables are sometimes referred to as
the I/O profile. Some of the parameters that
define a configuration's I/O profile are:

• Transfer size – The number of bytes or
blocks transferred.

• Seeking method – That is sequential,
random or mixed.

• Range – The area on which to execute
the I/O and its size. A couple of
examples are: the first 100 blocks of the
disk device or creating a file with a file
length of 1 GBs.

• Processes – The amount of processes
generating I/O operations that are
running concurrently to a disk device.
This includes the total number of hosts
as well as the number of processes of
I/O running to the end storage device.

• Data Pattern – The data pattern filled
into the write/read buffers and being
send to/from the disk device.

• Timing – The rate at which the I/Os
are generated including the timing
difference between read and write
operations.

While I have listed the most general
parameters in the makeup of an I/O profile,
note that the profile also includes the host's
Host Bus Adapter (hereafter, HBA) type and
configuration, the throttling levels of the
SCSI layer's Queue Depth, the SCSI Disk
Timeout Value, and if the disk device is in an
array you must also include the stripe/chunk
size of the disk device to even its RAID type
and more. Understanding the makeup of
the I/O profile is extremely important for
development, design and problem isolation.

When a process is initiated in User Space
and it needs to read or write from a device,
it will need enter the Kernel Space in order
to resume that process. Massive details of
the kernel including the different types are
not going to be discussed here. It is a topic
beyond the scope of this article. For further
information on the internals of a kernel it is
advised to pick up a book on kernel internals,
or specific Operating System materials [1].
This is more of a basic overview of what
the average kernel is responsible for. The
majority of the roles taken on by the average
kernel are:

Process/Task Management
The main task of a kernel is to allow the
execution of applications. Note that I am
using the terms process and application
interchangeably to signify one and the same
thing when in execution. That is because
a process is an application in execution.
This also includes the servicing of interrupt
request (IRQ) routines. The kernel needs
to perform context switching between
hardware and software contexts.

Memory Management
The kernel has complete access to the
system's memory and must allow processes
to safely access this memory as they need it.

Device Management
When processes need to access peripherals
connected to the computer, controlled by
the kernel through device drivers, the kernel
allows such access.

System Calls
In order to accomplish task such as file I/O,
the process is required to have access to
memory, and that same process must be able
to access various services that are provided
by the kernel. The process will make a call
for a function which in turn will invoke the
related kernel function.

The kernel internally refers to these
processes as tasks. Each process or task is
issued an ID unique to that running process
alone and managed in the application layer,
the kernel is unaware of the ID. A process
should not be confused with a thread. A
kernel thread means something else so
when you are running 12 instances of I/O,
you are running 12 processes of I/O and
not 12 threads. Threads of execution are the
objects of activity within the process (i.e.
instructions that a processor has to do).

A Process ID (PID) is an identifier to
the execution of a binary, a living result of
running program code. When the binary
completes its execution, the process to that
execution is wiped clean from memory. Here
is an example from a system running Linux
(on Windows you would invoke a tasklist):

Figure 1. 32-bit VMA model

����
�����

�����

������
�����

�������

������
�����

����������
�������������

������

������

�������

������

��������
������

32

inDEPTH
Linux Storage Management

LINUX+DVD 3/2009 33

inDEPTH
Linux Storage Management

www.lpmagazine.org/en

ps -ef|grep bash

root 12408 12406 0 07:43

pts/0 00:00:00 bash

This process holds the PID of 12408 and
this ID will be cleared once this process
is either completed or aborted (either by
user or error). If you want to find out more
information about an actively running
process, both Linux and UNIX make its
information, such as memory mappings,
file descriptor usage and more through its
virtual file system procfs mounted from the
root path at /proc. In it all actively running
processes are organized according to their
respective PID number.

Memory Management
Virtual Memory Addressing (VMA) is a
memory management technique commonly
utilized in multitasking Operating Systems,
wherein non-contiguous memory is presented
to a User Space process (i.e. a software
application) as contiguous memory, and

referred to as the virtual address space. VMA is
typically utilized in paged memory systems.

Paging memory allocation algorithms
divide a specific region of computer memory
into small partitions, and allocate memory
using a page as the smallest building block.
The memory access part of paging is done
at the hardware level via page tables, and is
handled by the Memory Management Unit
(MMU) local to the kernel. As mentioned
earlier, physical memory is divided into
small blocks called pages (typically 4 KB
in 32-bit architectures and 8KB in 64-bit
architectures) in size, and each block is
assigned a page number. The operating
system may keep a list of free pages in its
memory, or may choose to probe the memory
each time a memory request is made (though
most modern operating systems do the
former). Whatever the case, when a program
makes a request for memory, the operating
system allocates a number of pages to the
program, and keeps a list of allocated pages
for that particular program in memory.

When paging is used alongside with
virtual memory, the operating system has to
keep track of pages in use and pages which
will not be used or have not been used for
some time. Then, when the operating system
deems fit, or when a program requests a page
that has been swapped out, the operating
system swaps out a page to disk, and brings
another page into memory. In this way, you
can use more memory than your computer
physically has.

A paging file should NOT be confused
with a swap file. The swap file and paging
file are two different entities. Although both
are used to create virtual memory, there are
subtle differences between the two. The
main difference lies in their names. Swap
files operate by swapping a processes'
memory regions from system memory into
the swap file on the physical disk. Your
Operating System usually allocates a finite
size of swap space during installation. This
swapping immediately frees up memory for
other applications to use.

In contrast, paging files function by
moving pages of a program from system
memory into the paging file. These pages
are 4KB (again, usually determined by PC
architecture) in size. The entire program does
not get swapped wholesale into the paging file.
For further reading onto the topic of the host
side pages it is recommended to pick up a copy
of a book discussing kernel internals. This topic
is usually covered with greater detail.

When you open up a file unbuffered to
perform direct I/O, you are not using these
cache pages. So every time you work with
that recently modified and unbuffered file,
you are going straight to the location in disk
as opposed to memory instead holding the
altered data in pages. This feature can hurt
overall performance of file I/O to disk. By
relying on paging (buffered I/O) you are in fact
increasing your performance and productivity
because you are not constantly going straight
to the hard disk (which is obviously MUCH
slower than dynamic memory) to obtain your
data. While paging your data, you are able
to retrieve and send your data very quickly
while moving on to the next step in the file
I/O process. There are certain moments when
the data from a cache page will be flushed to
disk. When data is cached to this page, this
is marked as dirty because it is data that has
not been written to disk. These dirty pages get
written to disk when a Synchronize Cache is
invoked, or when new data belonging to the
same file area over writes the older paged
data. In the latter case the older paged data

Figure 2. The I/O Subsystem

�������

�����������

�����

�������������������

�����������

����������

����������

�����
�����

�������
�����

���������

Figure 3. The SCSI Subsystem

�����
�����

������
�����

�����
�����

��

���

������
��
���

32

inDEPTH
Linux Storage Management

LINUX+DVD 3/2009 33

inDEPTH
Linux Storage Management

www.lpmagazine.org/en

gets written to disk while the newer data gets
paged to the same memory address marking
that page as dirty once again.

To keep things simple I will detail the
32-Bit VMA Model. The Random Access
Memory (RAM) is separated into zones on
the O/S.

Zone 0: Direct memory Access (DMA)
Region

Zone 1: is a Linear mapping of the
Kernel Space (see Figure 1) while shared
with User Space calculations.

Zone 2: (High Memory Zone): Is a non-
linear mapping of the last 1/8GB of the VMA.

We obtain 4 GB of Virtual Memory
addressable regions on a 32-bit Operating
System because 2^32 equals 4294967296 or 4
GB. As for the User-Space Virtual 3 GB, this
is addressed wherever there is free memory.
We find our cache pages in kernel space of
the VMA model. On a 64-bit architecture
memory addressing performs much better.
There is more linear mapping and less
swapping in the high memory region.

General Layout
Some of you may be wondering why I
am discussing all this information for a
topic on Linux Storage Management. This
information becomes vital with regards to
understanding how the entire I/O subsystem
functions in Linux. When you tune on one
portion of the subsystem, you also need to
understand the ramifications it may have on
another portion. Which is why I present the
following diagram: see Figure 2

To briefly summarize, the above diagram
does a pretty good job of displaying the
general layout of the I/O subsystem on any
OS. When an I/O process is initiated for a
disk device it first travels through the file
system layer (assuming that it is a file over
a file system) to figure out where it needs
to go. Once that is figured out it is either
paged (enabled by default) or thrown into a
temporary buffer cache (for direct I/O). When
the I/O is ready to be written it is thrown into
another cache waiting for the scheduler. It is
up to the scheduler to intervene and prioritize
and coalesce the transfer(s). This occurs on
both Synchronous and Asynchronous I/O.
The I/O then gets sent to the block device
driver (sd_mod) and follows through to the
many other layers involved after that block
device driver (scsi_mod then the HBA
module). These layers vary depending on the
block device being written to. One last thing
to note with this diagram is that the process
is running in User Mode and it hits Kernel

Mode between the Process block and the File
system block (on the diagram). Everything
else below is Kernel Mode. This situation
occurs when a user mode function or API is
called which has a corresponding __syscall
(system call) into Kernel Mode such as a
write() or read() function. When writing
to a physical device, the file system layer is
skipped and the I/O requests are placed into
the temporary buffer cache for direct I/O.

If you are transferring I/O to/from a
SCSI based device (i.e. SCSI, SAS, Fibre
Channel, etc.), it is when these transfers fall
onto the SCSI driver that the CDB structure
is populated and that the SCSI Disk Timeout
Value initiates. If your I/O goes stale and you
do not see any activity and it does not time
out, chances are it never came to the SCSI
layer. The transfer(s) are possibly stuck in
one of the earlier layers.

The SCSI Subsystems and
Representation of Devices
In Linux, the SCSI Subsystem exists as a multi-
layered interface divided into the Upper, Middle
and Lower layers. The Upper Layer consists of
device type identification modules (i.e. Disk
Driver (sd), Tape Driver (st), CDROM Driver
(sr) and Generic Driver (sg)). The Middle
Layer's purpose is to connect both Upper and
Lower Layers and in our case is the scsi_
mod.ko module. The Lower Layer is for the
device drivers for the physical communication
interfaces between the host's SCSI Layer and
end target device. Here is where we will find
the device driver to the HBA.

Whenever the Lower Layer detects a newer
SCSI device, it will then provide scsi_mod.ko
with the appropriate host, bus (channel), target
and LUN Ids. Depending on what type of
media the devices are would determine what
Upper Layer driver will be invoked. If you
view /proc/scsi/scsi you can see what each
SCSI device's type is: see Listing 1.

The Direct-Access media type will utilize
the sd_mod.ko while the CD-ROM media type

will utilize the sr_mod.ko. Each respective
driver will allocate an available major and
minor number to each newly discovered and
properly identified device and on the 2.6
kernel, udev will create an appropriate node
name for each device. As an example, the
Direct-Access media type will be accessible
through the /dev/sdb node name. When a
device is removed, the physical interface driver
will detect it from the Lower Layer and pass
the information back up to the Upper Layer.

There are multiple approaches to tuning
the SCSI devices. Note that the more complex
approach involves the editing of source code
and recompiling the device driver to have
these variables hard-coded during the lifetime
of the utilized driver(s). That is not what we
want, we want a more dynamic approach.
Something that can be customized on-the-
fly. One day it may be optimal to configure a
driver one way and the next another.

The 2.6 Linux kernel introduced a new
virtual file system to help reduce the clutter that
became /proc (for those not familiar with the
traditional UNIX file system hierarchy, this was
originally intended for process information)
with a sysfs file system mounted at /sys.
To summarize, /sys contains all registered
components to the Operating System's kernel.
That is, you will find block devices, networking
ports, devices and drivers, etc. mapped from
this location and easily accessible from user
space for enhanced configuration(s). It is
through /sys that we will be able to navigate to
the disk device and fine tune it to how we wish
to utilize it. After I explain sysfs, I will move
onto to describing modules and how a module
can be inserted with fine-tuned and pseudo-
static parameters.

Let us assume that the disk device that
we want to view the parameters to and
possibly modify is /dev/sda. You would
navigate your way to /sys/block/sda. All
device details are stored or linked from this
point for device node named /dev/sda. If
you go to the device you can view time out

Listing 1. Listing identified SCSI devices

[pkoutoupis@linuxbox3 ~]$ cat /proc/scsi/scsi

Attached devices:

Host: scsi0 Channel: 00 Id: 00 Lun: 00

 Vendor: ATA Model: WDC WD800BEVS-08 Rev: 08.0

 Type: Direct-Access ANSI SCSI revision: 05

Host: scsi3 Channel: 00 Id: 00 Lun: 00

 Vendor: MATSHITA Model: DVD-RAM UJ-860 Rev: RB01

 Type: CD-ROM ANSI SCSI revision: 05

34

inDEPTH
Linux Storage Management

LINUX+DVD 3/2009 35

inDEPTH
Linux Storage Management

www.lpmagazine.org/en

values, queue depth values, current states,
vendor information and more (Listing 2).

To view a parameter value you can
simply open the file for a read.

[pkoutoupis@linuxbox3 device]$ cat

timeout

60

Here we can see that the timeout value
for SCSI labeled device is 60 seconds. To
modify the value you can echo the new value
into it.

[root@linuxbox3 device]# echo 180 >>

timeout

[root@linuxbox3 device]# cat timeout

180

You can perform the same task for the queue
depth of the device along with the rest of the
values. Approaching the disk device values

this way are unfortunately not maintained
statically. That means that every time the
device mapping is refreshed (through a
module removal/insertion, bus scan, or
a reboot) the values restore back to their
defaults. This can be both good and bad. A
basic shell script can modify all values to all
desired disk devices so that the user does not
have to enter each device path and modify
everything one by one. On top of the basic
shell script a simple cron job can also validate
that the values are maintained and if not it can
rerun the original modifying shell script.

Another way to modify values and have
them pseudo-statically maintained is by
inserting those values within the module
itself. For example if you do a modinfo on
scsi_mod you will see the following dumped
to the terminal screen (Listing 3).

The appropriate way to enable a pseudo-
static value is to insert the module with that
parameter:

[pkoutoupis@linuxbox3 device]$

modprobe scsi_mod max_luns=255

Or modify the /etc/modprobe.conf
(some platforms use an /etc/

modprobe.conf.local) file by appending
an options scsi_mod max_luns=255 and
then reinsert the module. In both cases you
must rebuild the RAM Disk so that when
the host reboots it will load max_luns=255
into the insertion of the scsi_mod module.
This is what I meant by pseudo-static. The
value is maintained only when it is inserted
during the insertion of the module and must
always be defined during its insertion to stay
statically assigned.

Some may now be asking, well what the
heck is a timeout value and what does queue
depth mean? A lot of resources with some
pretty good information can easily be found
on the Internet but as far as basic explanations
go, a SCSI timeout value is the maximum
value to which an outstanding SCSI command
has to completion on that SCSI device. So
for instance, when scsi_mod initiates a SCSI
command for the physical drive (the target)
associated with /dev/sda with a timeout
value of 60, it has 60 seconds to complete
the command and if it doesn't, an ABORT
sequence is issued to cancel the command.

The queue depth gets a little bit more
involved in which it limits the total amount of
transfers that can be outstanding for a device
at a given point. If I have 64 outstanding
SCSI commands that need to be issued to
/dev/sda and my queue depth is set to 32,
I can only service 32 at a time limiting my
throughput and thus creating a bottleneck to
slow down future transfers. On Linux, queue
depth becomes a very hairy topic primarily
because it is not adjusted only in the block
device parameters but is also defined on the
Lower Layer of the SCSI Subsystem where
the HBA throttles I/O with its own queue
depth values. This will be briefly explained
in the next section.

Other limitations can be seen on the
storage end. The storage controller(s) can
handle only so many service requests and in
most cases it may be forced to begin issuing
ABORTs for anything above its limit. In
turn the transfers may be retried from the
host side and complete successfully, so a
lot of this may not be that apparent to the
administrator.

Again, it becomes necessary to
familiarize oneself with these terms when
dealing with mass storage devices.The
2.6 Linux kernel introduced a new virtual

Listing 2. Listing device parameters in sysfs

[pkoutoupis@linuxbox3 device]$ ls

block:sda delete evt_media_change iodone_cnt modalias queue_depth

rev scsi_generic:sg0

subsystem uevent bsg:0:0:0:0 device_blocked generic ioerr_cnt model

queue_type

scsi_device:0:0:0:0 scsi_level timeout vendor bus driver

iocounterbits iorequest_cnt power

rescan scsi_disk:0:0:0:0 state type

Listing 3. Listing module parameters

[pkoutoupis@linuxbox3 device]$ modinfo scsi_mod

filename: /lib/modules/2.6.25.10-47.fc8/kernel/drivers/scsi/scsi_

mod.ko

license: GPL

description: SCSI core

srcversion: E9AA190FE1857E8BB844015

depends:

vermagic: 2.6.25.10-47.fc8 SMP mod_unload 686 4KSTACKS

parm: dev_flags:Given scsi_dev_flags=vendor:model:flags[,v:m:f] add

black/white list entries for vendor and model with an integer value of

flags to the scsi device info list (string)

parm: default_dev_flags:scsi default device flag integer value

(int)

parm: max_luns:last scsi LUN (should be between 1 and 2^32-1)

(uint)

parm: scan:sync, async or none (string)

parm: max_report_luns:REPORT LUNS maximum number of LUNS

received (should be between 1 and 16384) (uint)

parm: inq_timeout:Timeout (in seconds) waiting for devices to

answer INQUIRY. Default is 5. Some non-compliant devices need more. (uint)

parm: scsi_logging_level:a bit mask of logging levels (int)

34

inDEPTH
Linux Storage Management

LINUX+DVD 3/2009 35

inDEPTH
Linux Storage Management

www.lpmagazine.org/en

file system to help reduce the clutter that
became /proc (for those not familiar with
the traditional UNIX file system hierarchy,
this was originally intended for process
information) with a sysfs file system
mounted at /sys. To summarize, /sys
contains all registered components to the
Operating System's kernel. That is, you
will find block devices, networking ports,
devices and drivers, etc. mapped from
this location and easily accessible from
user space for enhanced configuration(s).
It is through /sys that we will be able to
navigate to the disk device and fine tune it
to how we wish to utilize it. After I explain
sysfs, I will move onto to describing
modules and how a module can be
inserted with fine-tuned and pseudo-static
parameters.

An HBA can also be optimized in
pretty much the same fashion as the SCSI
device. Although it is worth noting that the
parameters that can be adjusted to an HBA
are vendor specific. These are additional
timeout values, queue depth values, port
down retry counts, etc. Some HBAs come
with volume and/or path management
capabilities. Just simply identify the module
name for the device by doing an lsmod (it
may also be useful to first identify it usually
attached to your PCI bus by executing an
lspci). And from that point you should be
able to either navigate the /sys /module
path or just list all module parameters to that
device with a modinfo.

Methods of Storage
Management
Again, the Linux 2.6 kernel has made
great advancement in this area. With the
introduction of newer file system to even
methods of device and volume management,
it makes it increasingly easy for a storage
administrator to set up a Linux server to
perform all necessary tasks. In my personal
opinion, the best interface introduced in
the 2.6 kernel was the device-mapper
framework.

Device-mapper is one of the best
collection of device drivers that I have ever
worked with. It brings high availability,
flexibility and more to the Linux 2.6 kernel.
Device-mapper is a Linux 2.6 kernel
infrastructure that provides a generic way to
create virtual layers of a block device while
supporting stripping, mirroring, snapshots,
concatenation, multipathing, etc. Device-
mapper multipath provides the following
features:

• Allows the multivendor Storage RAID
systems and host servers equipped with
multivendor Host Bus Adapters (HBAs)
redundant physical connectivity along
the independent Fibre Channel fabric
paths available

• Monitors each path and automatically
reroutes (failover) I/O to an available
functioning alternate path if an existing
connection fails

• Provides an option to perform fail-back
of the LUN to the repaired paths

• Implements failover or failback actions
transparently without disrupting
applications

• Monitors each path and notifies if there
is a change in the path status

• Facilitates the load balancing among the
multiple paths

• Provides CLI with display options
to configure and manage Multipath
features

• Provides all Device Mapper Multipath
features support for any LUN newly
added to the host

• Provides an option to have customized
names for the Device Mapper Multipath
devices

• Provides persistency to the Device
Mapper Multipath devices across
reboots if there are any change in the
Storage Area Network

• Provides policy based path grouping
for the user to customize the I/O flow
through specific set of paths

Also built on top of the device mapper
framework is LVM2 which allows the
administrator to utilize those virtual layers of
block devices in creating both physical and

logical volumes, with snapshot capabilities.
In LVM2 physical and logical volumes can
be striped or mirrored to create volume
groups. Volume groups can be dynamically
resized while active and online. It is with
these volume groups that you will write a file
system to (if applicable) and mount locally
to either manage locally or share within a
network.

If you are utilizing an older version of the
2.6 kernel, you may be able to use mdadm as
a volume and path manager.

The File System
The file system is one of the most important
aspects to storage management. Deciding
which file system is best suited for your
environment rests solely on the type of
computing that is to be done to the volume.
Each file system has advantages and
disadvantages in certain workloads. So before
you tell yourself that you will use ZFS over
FUSE, Ext3, XFS or anything else, take some
time to understand the differences between
the options. Some questions to be asking
yourself are:

• What is relevent?
• What is to be the size of the file system

(i.e. files and directories)?
• How will the file system be frequently

accessed and how much load should I
expect it to work with?

• How recoverable or redundant do I want
the file system to be?

• If I need it to be 100% recoverable, how
much performance am I willing to lose?

• Do I want the application(s) accessing
the file system to handling caching or
the OS?

Listing 4. Listing multipath devices and paths

$ multipath -ll

32002000bb55555cd

[size=92 GB][features="1 queue_if_no_path"][hwhandler="0"]

_ round-robin 0 [active]

_ 30:0:0:2 sdc 8:32 [active][ready]

_ round-robin 0 [enabled]

_ 31:0:0:2 sdg 8:96 [active][ready]

32001000bb55555cd

[size=27 GB][features="1 queue_if_no_path"][hwhandler="0"]

_ round-robin 0 [enabled]

_ 30:0:0:1 sdb 8:16 [active][ready]

_ round-robin 0 [active]

_ 31:0:0:1 sdf 8:80 [active][ready]

36

inDEPTH
Linux Storage Management

LINUX+DVD 3/2009

One thing worth noting is that there is no single
best file system. Across all different types of
file systems you will find differences in:

• the limitations of file system and file
sizes

• number of files and directories it can
store

• on-disk space efficiency and block(s)
allocation methods

• journaling capabilities and options
• data consistency
• crash recovery methods (fsck,

journaling, copy-on-write)
• special features such as direct I/O

support, enabled compression and more

To quickly summarize some of your local
file systems
Ext2 is a simple, fast and stable file system
and while it is easy to repair, its recovery is
extremely slow, which is why the developers
introduced the journal in Ext3. Ext3 performs
slower than Ext2 primarily because of the
journal. Different journaling options are
supported but by default the file system
makes a copy of all meta data and file data
to the journal just before committing them to
the appropriate locations on the disk device.
This method of double writing costs a lot of
time in seek and write operations. It does
have a speedy recovery though. Another
problem with Ext3 is that its methods of block
allocation consume too much space for meta
data leaving less room for actual user data.

While ReiserFS is a journaled file system
that performs much better and is more space
efficient than Ext3, it is known for being a
little less unstable and has also been known
for poor repairing methods.

XFS has been known as one of the better
file systems for high performance and high
volume computing. It too supports a journal
but unlike the Ext3 file system, XFS only
journals the meta data of the operations to
be performed. It is also an extent based file
system that reserves data regions for a file,
thus reducing the amount of space wasted in
meta data. Data consistency is not as focused
here as it is on Ext3.

Is this file system to run on an embedded
device? For embedded devices, there are
usually limitations to the amount of erase/
write operations committed to a flash cell.
Which why JFFS2 supports a built in method
of wear leveling across the flash device. It is
slow but does its job.

Performance Tuning
Much like anything else, file systems can also
be tuned. As I had mentioned earlier things
such as journaling options can altered. So
can other parameters such as limiting write
operations as much as possible, by mounting
the device with the mount -o noatime switch.
You can also limit the maximum size of read/
write operations when mounting a device.

Other performance gains can be
dependent on the method of connection
between host(s) to target(s), where load

balancing becomes a big problem. How
do you balance the load to all Logical
Units (LU) making sure that all can get
serviced within an appropriate time frame?
Fortunately enough, this can be configured
through device-mapper and multipath-
tools. In device-mapper you can configure
for the load to be distributed in a round-
robin method of access across all available
paths or if set up as failover, you can have
I/O run on a single active path at a time
and make sure that two separate volumes
can travel across two separate paths: see
Listing 4.

The the above example I have two
separate paths for each volume. Each path
is going through a Fibre Channel node with
a node host number 30 and 31. The first
volumes active path is set to pass through
host 30 while in the second volume it is
the opposite. This way I can have the I/O
to both volumes balance across both paths
as opposed to limiting traffic across a single
path. If an active path were to fail, than I/O
would resume in the other path.

As mentioned earlier, other performance
gains can be achieved at the SCSI subsystem
level by modifying specific disk device
or HBA parameters. Again, any and all
modifications made will play some sort of
an impact to the rest of the I/O subsystem so
please proceed with caution.

Conclusion
As one can see, Linux Volume Management
is not a simple topic for discussion. A lot
is involved when attempting to set up and
configure an environment for computing
across Linux hosted volumes. As always,
before you proceed with any modification
review all provided reading materials. It can
save you from a lot of future headaches.

• Bar, Moshe. Linux File Systems
• Pate, Steven. UNIX Filesystems.
• Installation and Reference Guide Device Mapper Multipath Enablement Kit for HP

StorageWorks Disk Arrays
• Wikipedia Articles on Linux File Systems:
• en.wikipedia.org/wiki/Ext3
• en.wikipedia.org/wiki/ReiserFS
• en.wikipedia.org/wiki/XFS

Resources

Some excellent books come to mind:

• Linux Kernel Development by Robert Love
• Understanding the Linux Kernel by Daniel Bovet and Marco Cesati
• Solaris Internals(TM): Solaris 10 and OpenSolaris Kernel Architecture by Richard

McDougall, Jim Mauro

Further Reading

Petros Koutoupis has been using Linux
since 2001 and has been in software
development and administration even
longer. He has been involved with
enterprise storage computing from
2005 to the present and currently offers
consultation services in the same field. His
Web Site is www.hydrasystemsllc.com. He
can always be contacted at pkoutoupis@h
ydrasystemsllc.com.

About the Author

