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Linux Storage 
Management
For years now I have been working in the data storage industry, offering various services which 
include development and consultation. With regards to consultation, the services extend to storage 
customization, configuration and performance tuning.

Petros Koutoupis

During these instances I have taken 
notice, that while I work with extremely 
intelligent individuals, the education 
is still somewhat lacking in how the 

operating system manages the storage volumes and 
how to tune all aspects relating to this topic for the 
ideal computing environment. This in turn can lead to 
disastrous results.

The purpose of this article is to define some of 
the basics of all the layers involved in Linux 2.6 
storage management along with key concepts to 
be aware of with regards to decision making and 
performance tuning. The idea is to give the reader 
a better insight into analyzing the environment that 
they are configuring the storage for and to be able to 
understand the I/O profile that it is supposed to cater 
to. This article will in turn be partitioned into the 
following main topics: (1) the outline of the I/O and 
SCSI Subsystems, (2) followed by a summary of how 
the storage is presented to the host, (3) and finally, 
real world methods of configuring and tuning your 
environment.

What is I/O and How Do 
I Determine my I/O Profile?
In order to fully understand the following material, 
it becomes necessary to cover the basics of I/O and 
I/O management. In general the concept of I/O (or 
Input/Output) is the ability to perform an input and/or 
output operation between a computer and a device. That 
device could be a keyboard or mouse functioning as 
input devices. It could also be an output device such as 
a monitor updating the coordinates of the mouse cursor 
based on user input. With regards to data storage, when 
I/O is spoken of, it usually signifies the input and output 
streams of data to a disk device (a.k.a block device).

A block device is a device (i.e Hard Disk Drive, 
CD-ROM, floppy, et.c) that can host a file system and/or 
store non-volatile data. In most modern day computing 
systems, a block device can only handle I/O operations 
that transfer one or more whole blocks (or sectors), 
which are usually 512 bytes (or a larger power of two) 
in length. A block device can be accessed through a file 
system node mounted locally or networked and shared or 
through the physical device interface. The advantages to 
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utilizing a file system is to add organization 
in the storing of data so that it can be 
readable by both the user and the OS (with 
a corresponding application). File systems 
have become so advanced that there are 
numerous features written into the modules 
enabling the user to manage a redundant 
and/or high performing environment. 
Without the file system, the physical device 
would be a series of unintelligible sequence 
of byte values. There wouldn't be any meta-
data to identify the location of files including 
file specific information such as file size, 
permissions, etc.

Moving back to I/O. There are numerous 
ways to initiate an I/O process to a storage 
device. To keep this as simple as possible we 
will not get into great depth in those details. 
Just note that the basic steps an application 
usually uses to generate I/O between the 
application layer of the Operating System 
and the end storage device are: 

•  Open the device or file. 
•  Set the location from which to read or 

write. 
•  Execute the read or write operation. 
•  Repeat steps 2 and 3 as needed. 
•  Close the device or file.

Although these steps may seem a little 
simplistic, note that many variables are used 
to define how an I/O operation is performed. 
These variables are sometimes referred to as 
the I/O profile. Some of the parameters that 
define a configuration's I/O profile are:

•  Transfer size – The number of bytes or 
blocks transferred. 

•  Seeking method – That is sequential, 
random or mixed. 

•  Range – The area on which to execute 
the I/O and its size. A couple of 
examples are: the first 100 blocks of the 
disk device or creating a file with a file 
length of 1 GBs. 

•  Processes – The amount of processes 
generating I/O operations that are 
running concurrently to a disk device. 
This includes the total number of hosts 
as well as the number of processes of 
I/O running to the end storage device. 

•  Data Pattern – The data pattern filled 
into the write/read buffers and being 
send to/from the disk device. 

•  Timing – The rate at which the I/Os 
are generated including the timing 
difference between read and write 
operations.

While I have listed the most general 
parameters in the makeup of an I/O profile, 
note that the profile also includes the host's 
Host Bus Adapter (hereafter, HBA) type and 
configuration, the throttling levels of the 
SCSI layer's Queue Depth, the SCSI Disk 
Timeout Value, and if the disk device is in an 
array you must also include the stripe/chunk 
size of the disk device to even its RAID type 
and more. Understanding the makeup of 
the I/O profile is extremely important for 
development, design and problem isolation.

When a process is initiated in User Space 
and it needs to read or write from a device, 
it will need enter the Kernel Space in order 
to resume that process. Massive details of 
the kernel including the different types are 
not going to be discussed here. It is a topic 
beyond the scope of this article. For further 
information on the internals of a kernel it is 
advised to pick up a book on kernel internals, 
or specific Operating System materials [1]. 
This is more of a basic overview of what 
the average kernel is responsible for. The 
majority of the roles taken on by the average 
kernel are:

Process/Task Management 
The main task of a kernel is to allow the 
execution of applications. Note that I am 
using the terms process and application 
interchangeably to signify one and the same 
thing when in execution. That is because 
a process is an application in execution. 
This also includes the servicing of interrupt 
request (IRQ) routines. The kernel needs 
to perform context switching between 
hardware and software contexts. 

Memory Management 
The kernel has complete access to the 
system's memory and must allow processes 
to safely access this memory as they need it. 

Device Management 
When processes need to access peripherals 
connected to the computer, controlled by 
the kernel through device drivers, the kernel 
allows such access. 

System Calls 
In order to accomplish task such as file I/O, 
the process is required to have access to 
memory, and that same process must be able 
to access various services that are provided 
by the kernel. The process will make a call 
for a function which in turn will invoke the 
related kernel function.

The kernel internally refers to these 
processes as tasks. Each process or task is 
issued an ID unique to that running process 
alone and managed in the application layer, 
the kernel is unaware of the ID. A process 
should not be confused with a thread. A 
kernel thread means something else so 
when you are running 12 instances of I/O, 
you are running 12 processes of I/O and 
not 12 threads. Threads of execution are the 
objects of activity within the process (i.e. 
instructions that a processor has to do).

A Process ID (PID) is an identifier to 
the execution of a binary, a living result of 
running program code. When the binary 
completes its execution, the process to that 
execution is wiped clean from memory. Here 
is an example from a system running Linux 
(on Windows you would invoke a tasklist):

Figure 1. 32-bit VMA model
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# ps -ef|grep bash

root     12408   12406   0   07:43   

pts/0   00:00:00   bash

This process holds the PID of 12408 and 
this ID will be cleared once this process 
is either completed or aborted (either by 
user or error). If you want to find out more 
information about an actively running 
process, both Linux and UNIX make its 
information, such as memory mappings, 
file descriptor usage and more through its 
virtual file system procfs mounted from the 
root path at /proc. In it all actively running 
processes are organized according to their 
respective PID number.

Memory Management
Virtual Memory Addressing (VMA) is a 
memory management technique commonly 
utilized in multitasking Operating Systems, 
wherein non-contiguous memory is presented 
to a User Space process (i.e. a software 
application) as contiguous memory, and 

referred to as the virtual address space. VMA is 
typically utilized in paged memory systems.

Paging memory allocation algorithms 
divide a specific region of computer memory 
into small partitions, and allocate memory 
using a page as the smallest building block. 
The memory access part of paging is done 
at the hardware level via page tables, and is 
handled by the Memory Management Unit 
(MMU) local to the kernel. As mentioned 
earlier, physical memory is divided into 
small blocks called pages (typically 4 KB 
in 32-bit architectures and 8KB in 64-bit 
architectures) in size, and each block is 
assigned a page number. The operating 
system may keep a list of free pages in its 
memory, or may choose to probe the memory 
each time a memory request is made (though 
most modern operating systems do the 
former). Whatever the case, when a program 
makes a request for memory, the operating 
system allocates a number of pages to the 
program, and keeps a list of allocated pages 
for that particular program in memory.

When paging is used alongside with 
virtual memory, the operating system has to 
keep track of pages in use and pages which 
will not be used or have not been used for 
some time. Then, when the operating system 
deems fit, or when a program requests a page 
that has been swapped out, the operating 
system swaps out a page to disk, and brings 
another page into memory. In this way, you 
can use more memory than your computer 
physically has.

A paging file should NOT be confused 
with a swap file. The swap file and paging 
file are two different entities. Although both 
are used to create virtual memory, there are 
subtle differences between the two. The 
main difference lies in their names. Swap 
files operate by swapping a processes' 
memory regions from system memory into 
the swap file on the physical disk. Your 
Operating System usually allocates a finite 
size of swap space during installation. This 
swapping immediately frees up memory for 
other applications to use.

In contrast, paging files function by 
moving pages of a program from system 
memory into the paging file. These pages 
are 4KB (again, usually determined by PC 
architecture) in size. The entire program does 
not get swapped wholesale into the paging file. 
For further reading onto the topic of the host 
side pages it is recommended to pick up a copy 
of a book discussing kernel internals. This topic 
is usually covered with greater detail.

When you open up a file unbuffered to 
perform direct I/O, you are not using these 
cache pages. So every time you work with 
that recently modified and unbuffered file, 
you are going straight to the location in disk 
as opposed to memory instead holding the 
altered data in pages. This feature can hurt 
overall performance of file I/O to disk. By 
relying on paging (buffered I/O) you are in fact 
increasing your performance and productivity 
because you are not constantly going straight 
to the hard disk (which is obviously MUCH 
slower than dynamic memory) to obtain your 
data. While paging your data, you are able 
to retrieve and send your data very quickly 
while moving on to the next step in the file 
I/O process. There are certain moments when 
the data from a cache page will be flushed to 
disk. When data is cached to this page, this 
is marked as dirty because it is data that has 
not been written to disk. These dirty pages get 
written to disk when a Synchronize Cache is 
invoked, or when new data belonging to the 
same file area over writes the older paged 
data. In the latter case the older paged data 

Figure 2. The I/O Subsystem
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Figure 3. The SCSI Subsystem
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gets written to disk while the newer data gets 
paged to the same memory address marking 
that page as dirty once again.

To keep things simple I will detail the 
32-Bit VMA Model. The Random Access 
Memory (RAM) is separated into zones on 
the O/S.

Zone 0: Direct memory Access (DMA) 
Region 

Zone 1: is a Linear mapping of the 
Kernel Space (see Figure 1) while shared 
with User Space calculations. 

Zone 2: (High Memory Zone): Is a non-
linear mapping of the last 1/8GB of the VMA.

We obtain 4 GB of Virtual Memory 
addressable regions on a 32-bit Operating 
System because 2^32 equals 4294967296 or 4 
GB. As for the User-Space Virtual 3 GB, this 
is addressed wherever there is free memory. 
We find our cache pages in kernel space of 
the VMA model. On a 64-bit architecture 
memory addressing performs much better. 
There is more linear mapping and less 
swapping in the high memory region.

General Layout
Some of you may be wondering why I 
am discussing all this information for a 
topic on Linux Storage Management. This 
information becomes vital with regards to 
understanding how the entire I/O subsystem 
functions in Linux. When you tune on one 
portion of the subsystem, you also need to 
understand the ramifications it may have on 
another portion. Which is why I present the 
following diagram: see Figure 2

To briefly summarize, the above diagram 
does a pretty good job of displaying the 
general layout of the I/O subsystem on any 
OS. When an I/O process is initiated for a 
disk device it first travels through the file 
system layer (assuming that it is a file over 
a file system) to figure out where it needs 
to go. Once that is figured out it is either 
paged (enabled by default) or thrown into a 
temporary buffer cache (for direct I/O). When 
the I/O is ready to be written it is thrown into 
another cache waiting for the scheduler. It is 
up to the scheduler to intervene and prioritize 
and coalesce the transfer(s). This occurs on 
both Synchronous and Asynchronous I/O. 
The I/O then gets sent to the block device 
driver (sd_mod) and follows through to the 
many other layers involved after that block 
device driver (scsi_mod then the HBA 
module). These layers vary depending on the 
block device being written to. One last thing 
to note with this diagram is that the process 
is running in User Mode and it hits Kernel 

Mode between the Process block and the File 
system block (on the diagram). Everything 
else below is Kernel Mode. This situation 
occurs when a user mode function or API is 
called which has a corresponding __syscall 
(system call) into Kernel Mode such as a 
write() or read() function. When writing 
to a physical device, the file system layer is 
skipped and the I/O requests are placed into 
the temporary buffer cache for direct I/O. 

If you are transferring I/O to/from a 
SCSI based device (i.e. SCSI, SAS, Fibre 
Channel, etc.), it is when these transfers fall 
onto the SCSI driver that the CDB structure 
is populated and that the SCSI Disk Timeout 
Value initiates. If your I/O goes stale and you 
do not see any activity and it does not time 
out, chances are it never came to the SCSI 
layer. The transfer(s) are possibly stuck in 
one of the earlier layers.

The SCSI Subsystems and 
Representation of Devices
In Linux, the SCSI Subsystem exists as a multi-
layered interface divided into the Upper, Middle 
and Lower layers. The Upper Layer consists of 
device type identification modules (i.e. Disk 
Driver (sd), Tape Driver (st), CDROM Driver 
(sr) and Generic Driver (sg)). The Middle 
Layer's purpose is to connect both Upper and 
Lower Layers and in our case is the scsi_
mod.ko module. The Lower Layer is for the 
device drivers for the physical communication 
interfaces between the host's SCSI Layer and 
end target device. Here is where we will find 
the device driver to the HBA.

Whenever the Lower Layer detects a newer 
SCSI device, it will then provide scsi_mod.ko 
with the appropriate host, bus (channel), target 
and LUN Ids. Depending on what type of 
media the devices are would determine what 
Upper Layer driver will be invoked. If you 
view /proc/scsi/scsi you can see what each 
SCSI device's type is: see Listing 1.

The Direct-Access media type will utilize 
the sd_mod.ko while the CD-ROM media type 

will utilize the sr_mod.ko. Each respective 
driver will allocate an available major and 
minor number to each newly discovered and 
properly identified device and on the 2.6 
kernel, udev will create an appropriate node 
name for each device. As an example, the 
Direct-Access media type will be accessible 
through the /dev/sdb node name. When a 
device is removed, the physical interface driver 
will detect it from the Lower Layer and pass 
the information back up to the Upper Layer.

There are multiple approaches to tuning 
the SCSI devices. Note that the more complex 
approach involves the editing of source code 
and recompiling the device driver to have 
these variables hard-coded during the lifetime 
of the utilized driver(s). That is not what we 
want, we want a more dynamic approach. 
Something that can be customized on-the-
fly. One day it may be optimal to configure a 
driver one way and the next another.

The 2.6 Linux kernel introduced a new 
virtual file system to help reduce the clutter that 
became /proc (for those not familiar with the 
traditional UNIX file system hierarchy, this was 
originally intended for process information) 
with a sysfs file system mounted at /sys. 
To summarize, /sys contains all registered 
components to the Operating System's kernel. 
That is, you will find block devices, networking 
ports, devices and drivers, etc. mapped from 
this location and easily accessible from user 
space for enhanced configuration(s). It is 
through /sys that we will be able to navigate to 
the disk device and fine tune it to how we wish 
to utilize it. After I explain sysfs, I will move 
onto to describing modules and how a module 
can be inserted with fine-tuned and pseudo-
static parameters. 

Let us assume that the disk device that 
we want to view the parameters to and 
possibly modify is /dev/sda. You would 
navigate your way to /sys/block/sda. All 
device details are stored or linked from this 
point for device node named /dev/sda. If 
you go to the device you can view time out 

Listing 1. Listing identified SCSI devices

[pkoutoupis@linuxbox3 ~]$ cat /proc/scsi/scsi 

Attached devices: 

Host: scsi0 Channel: 00 Id: 00 Lun: 00 

  Vendor: ATA      Model: WDC WD800BEVS-08 Rev: 08.0 

  Type:   Direct-Access                  ANSI  SCSI revision: 05 

Host: scsi3 Channel: 00 Id: 00 Lun: 00 

  Vendor: MATSHITA Model: DVD-RAM UJ-860   Rev: RB01 

  Type:   CD-ROM                         ANSI  SCSI revision: 05 
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values, queue depth values, current states, 
vendor information and more (Listing 2).

To view a parameter value you can 
simply open the file for a read. 

[pkoutoupis@linuxbox3 device]$ cat 

timeout 

60 

Here we can see that the timeout value 
for SCSI labeled device is 60 seconds. To 
modify the value you can echo the new value 
into it. 

[root@linuxbox3 device]# echo 180 >> 

timeout 

[root@linuxbox3 device]# cat timeout 

180 

You can perform the same task for the queue 
depth of the device along with the rest of the 
values. Approaching the disk device values 

this way are unfortunately not maintained 
statically. That means that every time the 
device mapping is refreshed (through a 
module removal/insertion, bus scan, or 
a reboot) the values restore back to their 
defaults. This can be both good and bad. A 
basic shell script can modify all values to all 
desired disk devices so that the user does not 
have to enter each device path and modify 
everything one by one. On top of the basic 
shell script a simple cron job can also validate 
that the values are maintained and if not it can 
rerun the original modifying shell script. 

Another way to modify values and have 
them pseudo-statically maintained is by 
inserting those values within the module 
itself. For example if you do a modinfo on 
scsi_mod you will see the following dumped 
to the terminal screen (Listing 3). 

The appropriate way to enable a pseudo-
static value is to insert the module with that 
parameter: 

[pkoutoupis@linuxbox3 device]$  

modprobe scsi_mod max_luns=255 

Or modify the /etc/modprobe.conf 
(some platforms use an /etc/

modprobe.conf.local) file by appending 
an options scsi_mod max_luns=255 and 
then reinsert the module. In both cases you 
must rebuild the RAM Disk so that when 
the host reboots it will load max_luns=255 
into the insertion of the scsi_mod module. 
This is what I meant by pseudo-static. The 
value is maintained only when it is inserted 
during the insertion of the module and must 
always be defined during its insertion to stay 
statically assigned. 

Some may now be asking, well what the 
heck is a timeout value and what does queue 
depth mean? A lot of resources with some 
pretty good information can easily be found 
on the Internet but as far as basic explanations 
go, a SCSI timeout value is the maximum 
value to which an outstanding SCSI command 
has to completion on that SCSI device. So 
for instance, when scsi_mod initiates a SCSI 
command for the physical drive (the target) 
associated with /dev/sda with a timeout 
value of 60, it has 60 seconds to complete 
the command and if it doesn't, an ABORT 
sequence is issued to cancel the command. 

The queue depth gets a little bit more 
involved in which it limits the total amount of 
transfers that can be outstanding for a device 
at a given point. If I have 64 outstanding 
SCSI commands that need to be issued to 
/dev/sda and my queue depth is set to 32, 
I can only service 32 at a time limiting my 
throughput and thus creating a bottleneck to 
slow down future transfers. On Linux, queue 
depth becomes a very hairy topic primarily 
because it is not adjusted only in the block 
device parameters but is also defined on the 
Lower Layer of the SCSI Subsystem where 
the HBA throttles I/O with its own queue 
depth values. This will be briefly explained 
in the next section. 

Other limitations can be seen on the 
storage end. The storage controller(s) can 
handle only so many service requests and in 
most cases it may be forced to begin issuing 
ABORTs for anything above its limit. In 
turn the transfers may be retried from the 
host side and complete successfully, so a 
lot of this may not be that apparent to the 
administrator. 

Again, it becomes necessary to 
familiarize oneself with these terms when 
dealing with mass storage devices.The 
2.6 Linux kernel introduced a new virtual 

Listing 2. Listing device parameters in sysfs

[pkoutoupis@linuxbox3 device]$ ls 

block:sda  delete  evt_media_change  iodone_cnt  modalias  queue_depth  

rev  scsi_generic:sg0 

subsystem  uevent  bsg:0:0:0:0  device_blocked  generic  ioerr_cnt  model  

queue_type 

scsi_device:0:0:0:0  scsi_level  timeout  vendor  bus  driver  

iocounterbits  iorequest_cnt  power 

rescan  scsi_disk:0:0:0:0  state  type 

Listing 3. Listing module parameters

[pkoutoupis@linuxbox3 device]$ modinfo scsi_mod 

filename:       /lib/modules/2.6.25.10-47.fc8/kernel/drivers/scsi/scsi_

mod.ko 

license:        GPL 

description:    SCSI core 

srcversion:     E9AA190FE1857E8BB844015 

depends:        

vermagic:       2.6.25.10-47.fc8 SMP mod_unload 686 4KSTACKS 

parm:           dev_flags:Given scsi_dev_flags=vendor:model:flags[,v:m:f] add 

black/white list entries for vendor and model with an integer value of 

flags to the scsi device info list (string) 

parm:           default_dev_flags:scsi default device flag integer value 

(int) 

parm:           max_luns:last scsi LUN (should be between 1 and 2^32-1) 

(uint) 

parm:           scan:sync, async or none (string) 

parm:           max_report_luns:REPORT LUNS maximum number of LUNS 

received (should be between 1 and 16384) (uint) 

parm:           inq_timeout:Timeout (in seconds) waiting for devices to 

answer INQUIRY. Default is 5. Some non-compliant devices need more. (uint) 

parm:           scsi_logging_level:a bit mask of logging levels (int) 
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file system to help reduce the clutter that 
became /proc (for those not familiar with 
the traditional UNIX file system hierarchy, 
this was originally intended for process 
information) with a sysfs file system 
mounted at /sys. To summarize, /sys 
contains all registered components to the 
Operating System's kernel. That is, you 
will find block devices, networking ports, 
devices and drivers, etc. mapped from 
this location and easily accessible from 
user space for enhanced configuration(s). 
It is through /sys that we will be able to 
navigate to the disk device and fine tune it 
to how we wish to utilize it. After I explain 
sysfs, I will move onto to describing 
modules and how a module can be 
inserted with fine-tuned and pseudo-static 
parameters. 

An HBA can also be optimized in 
pretty much the same fashion as the SCSI 
device. Although it is worth noting that the 
parameters that can be adjusted to an HBA 
are vendor specific. These are additional 
timeout values, queue depth values, port 
down retry counts, etc. Some HBAs come 
with volume and/or path management 
capabilities. Just simply identify the module 
name for the device by doing an lsmod (it 
may also be useful to first identify it usually 
attached to your PCI bus by executing an 
lspci). And from that point you should be 
able to either navigate the /sys /module 
path or just list all module parameters to that 
device with a modinfo.

Methods of Storage 
Management
Again, the Linux 2.6 kernel has made 
great advancement in this area. With the 
introduction of newer file system to even 
methods of device and volume management, 
it makes it increasingly easy for a storage 
administrator to set up a Linux server to 
perform all necessary tasks. In my personal 
opinion, the best interface introduced in 
the 2.6 kernel was the device-mapper 
framework.

Device-mapper is one of the best 
collection of device drivers that I have ever 
worked with. It brings high availability, 
flexibility and more to the Linux 2.6 kernel. 
Device-mapper is a Linux 2.6 kernel 
infrastructure that provides a generic way to 
create virtual layers of a block device while 
supporting stripping, mirroring, snapshots, 
concatenation, multipathing, etc. Device-
mapper multipath provides the following 
features: 

•  Allows the multivendor Storage RAID 
systems and host servers equipped with 
multivendor Host Bus Adapters (HBAs) 
redundant physical connectivity along 
the independent Fibre Channel fabric 
paths available 

•  Monitors each path and automatically 
reroutes (failover) I/O to an available 
functioning alternate path if an existing 
connection fails 

•  Provides an option to perform fail-back 
of the LUN to the repaired paths 

•  Implements failover or failback actions 
transparently without disrupting 
applications 

•  Monitors each path and notifies if there 
is a change in the path status 

•  Facilitates the load balancing among the 
multiple paths 

•  Provides CLI with display options 
to configure and manage Multipath 
features 

•  Provides all Device Mapper Multipath 
features support for any LUN newly 
added to the host 

•  Provides an option to have customized 
names for the Device Mapper Multipath 
devices 

•  Provides persistency to the Device 
Mapper Multipath devices across 
reboots if there are any change in the 
Storage Area Network 

•  Provides policy based path grouping 
for the user to customize the I/O flow 
through specific set of paths 

Also built on top of the device mapper 
framework is LVM2 which allows the 
administrator to utilize those virtual layers of 
block devices in creating both physical and 

logical volumes, with snapshot capabilities. 
In LVM2 physical and logical volumes can 
be striped or mirrored to create volume 
groups. Volume groups can be dynamically 
resized while active and online. It is with 
these volume groups that you will write a file 
system to (if applicable) and mount locally 
to either manage locally or share within a 
network.

If you are utilizing an older version of the 
2.6 kernel, you may be able to use mdadm as 
a volume and path manager.

The File System
The file system is one of the most important 
aspects to storage management. Deciding 
which file system is best suited for your 
environment rests solely on the type of 
computing that is to be done to the volume. 
Each file system has advantages and 
disadvantages in certain workloads. So before 
you tell yourself that you will use ZFS over 
FUSE, Ext3, XFS or anything else, take some 
time to understand the differences between 
the options. Some questions to be asking 
yourself are:

•  What is relevent?
•  What is to be the size of the file system 

(i.e. files and directories)?
•  How will the file system be frequently 

accessed and how much load should I 
expect it to work with?

•  How recoverable or redundant do I want 
the file system to be?

•  If I need it to be 100% recoverable, how 
much performance am I willing to lose?

•  Do I want the application(s) accessing 
the file system to handling caching or 
the OS?

Listing 4. Listing multipath devices and paths

$ multipath -ll

32002000bb55555cd

[size=92 GB][features="1 queue_if_no_path"][hwhandler="0"]

\_ round-robin 0 [active]

\_ 30:0:0:2 sdc 8:32 [active][ready]

\_ round-robin 0 [enabled]

\_ 31:0:0:2 sdg 8:96 [active][ready]

32001000bb55555cd

[size=27 GB][features="1 queue_if_no_path"][hwhandler="0"]

\_ round-robin 0 [enabled]

\_ 30:0:0:1 sdb 8:16 [active][ready]

\_ round-robin 0 [active]

\_ 31:0:0:1 sdf 8:80 [active][ready]
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One thing worth noting is that there is no single 
best file system. Across all different types of 
file systems you will find differences in:

•  the limitations of file system and file 
sizes

•  number of files and directories it can 
store

•  on-disk space efficiency and block(s) 
allocation methods

•  journaling capabilities and options
•  data consistency
•  crash recovery methods (fsck, 

journaling, copy-on-write)
•  special features such as direct I/O 

support, enabled compression and more

To quickly summarize some of your local 
file systems
Ext2 is a simple, fast and stable file system 
and while it is easy to repair, its recovery is 
extremely slow, which is why the developers 
introduced the journal in Ext3. Ext3 performs 
slower than Ext2 primarily because of the 
journal. Different journaling options are 
supported but by default the file system 
makes a copy of all meta data and file data 
to the journal just before committing them to 
the appropriate locations on the disk device. 
This method of double writing costs a lot of 
time in seek and write operations. It does 
have a speedy recovery though. Another 
problem with Ext3 is that its methods of block 
allocation consume too much space for meta 
data leaving less room for actual user data.

While ReiserFS is a journaled file system 
that performs much better and is more space 
efficient than Ext3, it is known for being a 
little less unstable and has also been known 
for poor repairing methods.

XFS has been known as one of the better 
file systems for high performance and high 
volume computing. It too supports a journal 
but unlike the Ext3 file system, XFS only 
journals the meta data of the operations to 
be performed. It is also an extent based file 
system that reserves data regions for a file, 
thus reducing the amount of space wasted in 
meta data. Data consistency is not as focused 
here as it is on Ext3.

Is this file system to run on an embedded 
device? For embedded devices, there are 
usually limitations to the amount of erase/
write operations committed to a flash cell. 
Which why JFFS2 supports a built in method 
of wear leveling across the flash device. It is 
slow but does its job.

Performance Tuning
Much like anything else, file systems can also 
be tuned. As I had mentioned earlier things 
such as journaling options can altered. So 
can other parameters such as limiting write 
operations as much as possible, by mounting 
the device with the mount -o noatime switch. 
You can also limit the maximum size of read/
write operations when mounting a device.

Other performance gains can be 
dependent on the method of connection 
between host(s) to target(s), where load 

balancing becomes a big problem. How 
do you balance the load to all Logical 
Units (LU) making sure that all can get 
serviced within an appropriate time frame? 
Fortunately enough, this can be configured 
through device-mapper and multipath-
tools. In device-mapper you can configure 
for the load to be distributed in a round-
robin method of access across all available 
paths or if set up as failover, you can have 
I/O run on a single active path at a time 
and make sure that two separate volumes 
can travel across two separate paths: see 
Listing 4.

The the above example I have two 
separate paths for each volume. Each path 
is going through a Fibre Channel node with 
a node host number 30 and 31. The first 
volumes active path is set to pass through 
host 30 while in the second volume it is 
the opposite. This way I can have the I/O 
to both volumes balance across both paths 
as opposed to limiting traffic across a single 
path. If an active path were to fail, than I/O 
would resume in the other path.

As mentioned earlier, other performance 
gains can be achieved at the SCSI subsystem 
level by modifying specific disk device 
or HBA parameters. Again, any and all 
modifications made will play some sort of 
an impact to the rest of the I/O subsystem so 
please proceed with caution.

Conclusion
As one can see, Linux Volume Management 
is not a simple topic for discussion. A lot 
is involved when attempting to set up and 
configure an environment for computing 
across Linux hosted volumes. As always, 
before you proceed with any modification 
review all provided reading materials. It can 
save you from a lot of future headaches.

•  Bar, Moshe. Linux File Systems
•  Pate, Steven. UNIX Filesystems.
•  Installation and Reference Guide Device Mapper Multipath Enablement Kit for HP 

StorageWorks Disk Arrays 
•  Wikipedia Articles on Linux File Systems: 
•  en.wikipedia.org/wiki/Ext3 
•  en.wikipedia.org/wiki/ReiserFS 
•  en.wikipedia.org/wiki/XFS

Resources

Some excellent books come to mind:

•  Linux Kernel Development by Robert Love
•  Understanding the Linux Kernel by Daniel Bovet and Marco Cesati 
•  Solaris Internals(TM): Solaris 10 and OpenSolaris Kernel Architecture by Richard 

McDougall, Jim Mauro 
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