

GEEK GUIDE  Securing Serverless Applications

2

Introduction��5

Introducing Cloud Native Computing�������������������������������������6

Going Serverless���8

 The Shrinking Operating System��� 9

 The Evolution of Containers in the Cloud�� 11

Security on Serverless Systems��� 13

The Importance of Application Security������������������������������ 15

Twistlock��� 16

 The Many Benefits of Using Twistlock��� 17

 Leveraging Twistlock for a More Secure Cloud Deployment����������������������������������� 20

The Cloud Native Computing Foundation���������������������������� 21

Summary��� 22

Table of Contents

PETROS KOUTOUPIS is currently a senior platform architect at IBM for its Cloud
Object Storage division (formerly Cleversafe). He is also the creator and maintainer
of the RapidDisk Project (http://www.rapiddisk.org). Petros has worked in the data
storage industry for more than a decade and has helped pioneer the many technologies
unleashed in the wild today.

http://www.rapiddisk.org

GEEK GUIDE  Securing Serverless Applications

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2017 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE  Securing Serverless Applications

4

About the Sponsor
Twistlock

Twistlock protects today’s applications from tomorrow’s

threats with advanced intelligence and machine learning

capabilities. Automated policy creation and enforcement

along with native integration to leading CI/CD tools provide

security that enables innovation by not slowing development.

Robust compliance checks and extensibility allow full control

over your environment from developer workstations through

to production. As the first end-to-end container security

solution, Twistlock is purpose-built to deliver modern security.

GEEK GUIDE  Securing Serverless Applications

5

Introduction
Access to services and data is what drives this little thing we

refer to as the cloud. In the past decade alone, the paradigm

shift toward a wider and more accessible network has forced

both hardware vendors and service providers to rethink their

strategies and cater to a new model of storing and, in turn,

accessing information. With that comes the responsibility to

develop on service-focused applications and integrate them

continuously into a stable and controlled environment. And

as more individuals and businesses connect themselves to the

greater world, it becomes increasingly necessary to secure

the information that travels across our networks. This is where

Securing
Serverless
Applications
	 PETROS KOUTOUPIS

GEEK GUIDE  Securing Serverless Applications

6

a serverless computing model begins to shine.

Often described as Functions as a Service (FaaS),

serverless computing enables the division of system logic

into a collection of independent functions or applications.

This model adds a level of granularity to the types of

services actually running and, in turn, to maintaining an

accurate usage count of those services, affecting billing.

This is unlike traditional whole server or virtual machine

deployments where a user pays for each running instance.

And for what? To host a few functions. Economic benefits

aside, the serverless platform is designed for better security,

fail-over and load-balancing. With all the overhead required

to maintain fuller operating environments removed,

developers are left with an isolated micro-instance in which

they can develop and run their application code quickly.

This ebook introduces the concept of serverless computing

as it relates to the cloud, while also highlighting the

challenges of securing such an environment. Read on to learn

what tools are available to deploy your applications securely.

Introducing Cloud Native Computing
Cloud native computing, a more focused term for serverless

computing, is not only the latest trending buzzword in

the data center, but it also offers a new way of hosting

applications. The idea challenges what traditionally has

been the norm and puts more power into the application

itself while abstracting away everything underneath it.

Far too often, the idea of the “cloud” is confused with

the internet in general. Although it’s true that various

components that make up the cloud can be accessible via

GEEK GUIDE  Securing Serverless Applications

7

the internet, they’re not one and the same. In its most

general terms, cloud computing enables companies, service

providers and individuals to provision dynamically the

appropriate amount of computing resources (for example,

compute nodes, block or object storage and so on) for their

application needs. These application services are accessed

over a network and not necessarily a public network either.

There are three distinct types of cloud deployments:

public, private and a hybrid of both.

The public cloud differentiates itself from the private

cloud in that the private cloud typically is deployed in the

data center and under the proprietary network using its

cloud computing technologies—that is, it is developed for

and maintained by the organization it serves. Resources

for private cloud deployments are acquired via normal

hardware purchasing means and through traditional

hardware sales channels. This is not the case for the public

cloud. Resources for the public cloud are provisioned

dynamically to its user as they are requested, and they may

be offered under a pay-per-usage model or for free.

Some of the world’s leading public cloud offerings

platforms include:

n	 Amazon Web Services (AWS).

n	 Microsoft Azure.

n	 Google Cloud Platform.

n	 IBM Cloud (formerly, SoftLayer).

GEEK GUIDE  Securing Serverless Applications

8

As the name implies, the hybrid model allows for seamless

access and transitioning between both public and private

deployments, all managed under a single framework.

In short, the cloud simplifies operating system/application

deployment and the management of those allocated resources.

It also reduces capital expenses and optimizes budgets

by reducing the needs to acquire, configure and maintain

data-center hardware. The best part of the cloud is that it

is designed to scale to consumer needs or requirements.

Going Serverless
Cloud native computing is a more recent term describing

the modern trend of deploying and managing applications.

The idea is pretty straightforward. Each application or

process is packaged into its own container, which in

turn is orchestrated dynamically (that is, scheduled and

managed) across a cluster of nodes. This approach moves

applications away from physical hardware and operating

system dependency and into their own self-contained

This approach moves applications away
from physical hardware and operating
system dependency and into their own
self-contained and sandboxed environment
that can run transparently and seamlessly
anywhere within the data center.

GEEK GUIDE  Securing Serverless Applications

9

and sandboxed environment that can run transparently

and seamlessly anywhere within the data center. The

cloud native approach is about separating the various

components of application delivery. And with the entire

operating system removed, it aids developers in writing

cleaner, more robust and easier to debug code.

The Shrinking Operating System Once upon a time,

data-center administrators deployed entire operating

systems, occupying entire hardware servers, to host a

few applications each. It was a lot of overhead with a lot

to manage. Now, scale that across multiple server hosts,

and it increasingly become more difficult to maintain.

This was a problem and a problem that wasn’t easily

solved. It would take time for the technological evolution

to bring us to where we are able to shrink the operating

system to the point of running a type of virtualized

technology commonly referred to as containers, but what

are containers?

The short answer is that containers decouple software

applications from the operating system, giving users

a clean and minimal Linux environment while running

everything else in one or more isolated “containers”. It

is about as close to bare metal that one can get when

running a virtual instance, and the technology imposes

very little to no overhead. Using namespaces to enforce

process isolation and leveraging the kernel’s very own

Control Groups (cgroups) functionality, the feature limits,

accounts for and isolates the CPU, memory, disk I/O and

network usage of one or more processes.

The primary purpose for enabling a container is to

GEEK GUIDE  Securing Serverless Applications

10

launch a limited set of applications or services (often

referred to as microservices) and have them run within

their own sandboxed environment. This isolation

prevents processes running within a given container from

monitoring or affecting processes running in another

container. Also, these containerized services do not

influence or disturb the host machine. It is a more secure

way to host your applications. The idea of being able

to consolidate many services scattered across multiple

physical servers into one is one of the many reasons data

centers have chosen to adopt the technology.

The most popular container technology is Docker. It

is a userspace and lightweight virtualization platform

that, again, utilizes cgroups and namespaces to manage

resource isolation. Docker stood out from the rest

by adding better portability for rapid image-based

FIGURE 1. A Comparison of Applications Running in a

Traditional Environment to Containers

GEEK GUIDE  Securing Serverless Applications

11

deployments and image version control.

The Evolution of Containers in the Cloud As one

would expect, container technology has helped accelerate

cloud adoption. Think about it. You have these persistent

containerized application images that within seconds

are spun up or down as needed and balanced across

multiple nodes or data-center locations to achieve the

best in quality of service (QoS). Even the big-time public

cloud providers discussed earlier make use of the same

container technologies and for the same reason: rapid

application deployment. For instance, Amazon, Microsoft

and Google provide their container services with Docker.

And as it applies to the greater serverless ecosystem,

the applications hosted in these containers are stateless

and event-triggered. This means that a third-party

component will manage access to this application, as it

is needed and invoked.

Now when I think of a true serverless solution, one

of the first things that comes to mind is Amazon’s AWS

Lambda. Amazon takes serverless to the next level

with Lambda, by spinning up a container to host the

applications you need, ensuring access and availability

for your business or service. Under this model, there is no

need to provision or manage physical or virtual servers.

Assuming it is in a stable or production state, you just

deploy your code and you are done. With Lambda, you

do not manage the container (further reducing your

overhead). Your code is just deployed within an isolated

containerized environment. It is pretty straightforward.

AWS Lambda enables user-defined code functions to

GEEK GUIDE  Securing Serverless Applications

12

be triggered directly via a user-defined HTTPS request.

The way Lambda differs from traditional containerized

deployment is that Amazon has provided a framework

for developers to upload their event-driven application

code (written in Node.js, Python, Java or C#) and

respond to events, such as website clicks, within

milliseconds. All libraries and dependencies to run the

bulk of your code are provided for within the container.

Lambda will scale automatically to support the exact

needs of your application.

As for the types of events, labeled an event source,

on which to trigger your application, or code handlers,

Amazon has made it so you can trigger on website visits

or clicks, a REST HTTP request to its API gateway, a sensor

reading on your Internet-of-Things (IoT) device, or even

an upload of a photograph to an S3 bucket. This API

gateway forms the bridge that connects all parts of AWS

Lambda. For example, a developer can write a handler to

trigger on HTTPS request events.

Let’s say you need to enable a level of granularity

to your code. Lambda accommodates this by allowing

developers to write modular handlers. For instance, you

can write one handler to trigger for each API method.

And each handler can be invoked, updated and altered

independent of the others.

Lambda allows you to combine all required

dependencies (that is, libraries, native binaries or even

external web services) to your function into a single

package, giving a handler the freedom to reach out to

any of those dependencies as it needs them.

GEEK GUIDE  Securing Serverless Applications

13

Now, how does this compare to an Amazon AWS

Elastic Cloud Computing (EC2) instance? Well, the short

answer is that it’s a lot more simplified, and by simplified,

I mean, there is zero to no overhead on configuring or

maintaining your operating environment. If you need

more out of your environment that requires access to

a full-blown operating system or container, you will

spin up an EC2 virtual instance. EC2 provides users

the flexibility to customize their virtual machine with

both the hardware and software it will host. If you only

need to host a function or special-purpose application,

that is where Lambda becomes the better choice. With

Lambda, there isn’t much to customize. And sometimes,

less is good.

Security on Serverless Systems
By adopting a serverless paradigm for building deployable

host applications, the operational responsibilities are

delegated to the cloud provider. There is no need for the

application developer to patch the operating system or

install an assortment of services to collect system logs

and metrics. And while the serverless model does address

By adopting a serverless paradigm for
building deployable host applications, the
operational responsibilities are delegated to
the cloud provider.

GEEK GUIDE  Securing Serverless Applications

14

a large portion of today’s security concerns by pushing

those concerns to the platform provider, it still isn’t entirely

immune to attacks. If anything, hackers or attackers will

shift their focus away from the entire server and to the

application itself (such as cross-site scripting and SQL

injection). Even data at rest (that is, contents stored in your

database) can become accessible to an attacker. Restricted

access and crypto algorithms often are used to deter

attackers from the latter.

With serverless deployments, you are most vulnerable

in your code and the dependencies (which are quickly

outdated) accessed by or bundled with your code.

Monitoring for such flaws or inappropriate access becomes

increasingly difficult. It is nearly impossible to track who is

using your functions after it has been deployed. To minimize

your exposure, it is recommended to disable or remove

unused and stale code from your production environment.

Delete unused functions. And if you know something has

open vulnerabilities, either patch it or remove it. Also,

make it a habit to update those dependencies. These

dependencies can provide would-be attackers the entry they

need to compromise your application.

Another way to minimize your exposure is to keep your

functions simple and small, and in turn, restrict permissions

to it. This also makes both your code and the environment

in which it is executed easier to maintain. For instance,

cloud platforms such as AWS enable Identity and Access

Management (IAM) services to control access to AWS

resources securely (including your Lambda deployments) for

users. If it is an option, be sure to use it.

GEEK GUIDE  Securing Serverless Applications

15

The Importance of Application Security
Not everything can and will run in this serverless

environment. There will be a need to communicate with

applications and services hosted on other systems (physical,

virtual or in containers). And although container technology

brings with it an added layer of security for running

applications in an isolated environment, containers alone are

not an alternative to taking proper security measures. Unlike

traditional hypervisors, a container can have a more direct

path to the host operating system’s kernel, which is why it is

standard procedure to drop privileges as quickly as possible

and run all the services as non-root wherever possible. Also,

note that whenever a containerized process requires access

to the underlying filesystem, you should make it a good habit

of mounting that filesystem as read-only.

The state of a container image also raises concern—which

is why it is improper to run containers (be it Docker or

anything else) from an untrusted source. When deploying

an unknown or unofficial image, you increase the risk of

running vulnerable or buggy code in your environment. And

if that container is configured to host a privileged process,

any attack exposing a potential vulnerability eventually

could cost the data center an entire host system.

There also exists the potential for a container to run

system binaries that it probably shouldn’t be touching in

the first place, at least without your knowledge. Another

similar scenario is when a rogue application or attacker

gains container access through an application vulnerability

and replaces some of the underlying system binaries with

one that does not belong or was not intended to run in

GEEK GUIDE  Securing Serverless Applications

16

that container image—all of which will continue to run

during the life of that container. This can result in additional

system and network compromises or worse.

Twistlock
Twistlock offers the first end-to-end security solution

built for container, serverless and other cloud native

environments. It protects against software exploits,

malware and active threats through its advanced

intelligence and machine-learning capabilities. Twistlock

automatically profiles expected application behavior

and enforces this as a whitelist-based security model—

reducing manual overhead and delivering stronger

security than traditional blacklist-based technologies. By

integrating much earlier into the application lifecycle,

Twistlock helps developers address security gaps and CVEs

during the build phase—before code is ever deployed

to production—whether the code is part of a serverless

function, container image or other modern application.

Twistlock sources more than 30 vulnerability and

threat intelligence feeds, combining them with its

proprietary research from Twistlock Labs. This ensures

that Twistlock customers are kept updated, in real time,

Twistlock offers the first end-to-end security
solution built for container, serverless and
other cloud native environments.

GEEK GUIDE  Securing Serverless Applications

17

on all known application CVEs (Common Vulnerabilities

and Exposures), exploits and threats—while significantly

reducing false positives.

The Many Benefits of Using Twistlock The Twistlock

platform both addresses risks before deploying code to

production and defends running applications against

threats. Twistlock is built as a Docker image and runs

as a container on each Docker engine to protect your

running applications. An additional container provides

vulnerability and compliance scanning, and a centralized

management console.

Let’s look at Twistlock’s main benefits:

n	 Runtime protection: Twistlock runtime defense

protects your containers against detected exploits,

compromises, application flaws and configuration

errors. It actively monitors container activities and

detects policy violations. Twistlock will report all

anomalous behaviors while also taking the appropriate

actions to disconnect or isolate them, preventing

disruption to any and all other containers across the

Kubernetes cluster. Twistlock can identify when a

container does something that it shouldn’t be doing.

For instance, if a container running nginx suddenly

invokes netstat and netstat isn’t a whitelisted process

for that image, Twistlock will detect it.

n	 Vulnerability management: Twistlock Vulnerability

Explorer provides in-depth details on the state of

known CVEs impacting your serverless applications,

GEEK GUIDE  Securing Serverless Applications

18

including risk scoring, to help you identify risk and

prioritize remediation. The Twistlock Intelligence

Stream, which includes vulnerability data for serverless-

specific threats and vulnerabilities, powers this

vulnerability management capability. Twistlock provides

users with granular control when managing the types

of vulnerabilities beyond their severity ratings. For

example, you can block individual CVEs explicitly while

ignoring or alerting upon identifying others.

n	 Continuous integration: Twistlock integrates directly

into your continuous integration (CI) process (such as

Jenkins). This way it can find and report problems before

they ever make it out into production. In some cases,

when a package with an open CVE is reported, Twistlock

also will report the package version that has the fix.

Developers are given clear insight into the vulnerabilities

present in every build. These plugins allow you to define

and enforce your vulnerability policies at build time. For

instance, you can set a policy requiring that one build job

must not have any vulnerability, or you can flag specific

CVEs while ignoring the rest.

n	 Compliance: the Center for Internet Security (CIS) Docker

and CIS Kubernetes Benchmarks provide guidance for

establishing a secure configuration of a Docker container.

In short, this benchmark provides the best security

practices for deploying Docker. Twistlock has developed

150+ built-in checks to validate the recommended

practices from this benchmark. In parallel to this,

GEEK GUIDE  Securing Serverless Applications

19

Twistlock includes an extensive list of configuration

checks for the host machine, Docker dæmon, Docker

files and directories. Organizations using Twistlock

will be able to enforce Trusted Registries (containing

images approved by Twistlock) and Trusted Images.

When configured, Twistlock can enforce that the images

from these trusted lists are the only ones deployed onto

production servers.

n	 Firewalls: Twistlock offers both Cloud Native Application

Firewalls (CNAF) and Cloud Native Network Firewalls

(CNNF) that provide added security for your production

containers. Twistlock automatically maps, identifies and

whitelists valid traffic flows in your environment based

on proximity to your applications and knowledge of how

they behave. Twistlock dynamically creates filters that

automatically allow valid connections and drop suspicious

connections, regardless of where your containers are

running in the cluster.

n	 Access control: using Twistlock, you can define and

enforce policies governing user access to both Docker and

Kubernetes resources, limiting specific users to individual

functions or APIs. Out of the box, Twistlock supports

enterprise identity directories that include Active Directory,

OpenLDAP and SAML providers. This allows you to specify

access policies to container resources without the need

to create new identities and groups. You can monitor

detailed user access audit trails, action types, services

requested and more from the console.

GEEK GUIDE  Securing Serverless Applications

20

Leveraging Twistlock for a More Secure Cloud

Deployment Now that you understand a bit about the

problem—that is, security in the cloud—it goes without

saying that Twistlock tackles that problem head on. It will

complement your current infrastructure while adding that

additional layer of security and container image compliance

across your entire cluster of nodes (local and remote).

Now how do all these components come together? It

begins with users accessing your service through a website

or via an application on their mobile devices. The web server

FIGURE 2. Putting All of the Pieces Together

GEEK GUIDE  Securing Serverless Applications

21

and the various components on which it relies may be

hosted from locally managed containers. Those containers

are secured and monitored by Twistlock. If a particular

function is required by either the web server container or

the mobile application, it will reach out to a third-party

authentication service, such as IAM, to gain the proper

credentials for accessing the serverless functions hosted

beyond the API gateway. When triggered, these functions

will perform the necessary actions and return with whatever

the web server or mobile application requested.

The Cloud Native Computing Foundation
Formed in 2015, the Cloud Native Computing Foundation

(CNCF) was assembled to help standardize these recent

paradigm shifts in hosting cloud services—that is, to

unify and define the cloud native era. The primary goal

of the foundation is to be the best place to host cloud

native software projects. The foundation is home to

many cloud-centric projects, including the Kubernetes

orchestration framework.

To help standardize this new trend of computing, the

foundation has divided the entire architecture to a set

of subsystems, each with its own set of standardized

APIs for inter-component communication. Subsystems

include orchestration, resource scheduling and distributed

systems services.

As a proud member of the foundation, Twistlock is

committed to providing its customers with the most stable

and secure serverless computing environments.

You can learn more about the foundation by visiting the

GEEK GUIDE  Securing Serverless Applications

22

foundation’s official website: https://www.cncf.io.

Summary
DevOps and end users are in constant need of an

environment where new or updated code can be deployed

instantly. The cloud native computing model allows for this,

and it also reduces the overhead and complexity in managing

and maintaining the environment hosting the application. It

is simple: focus on your code and nothing more.

With Twistlock in the picture, you can not only focus

solely on your code, but you can do so with the assurance

that it will be running in a secured environment.n

FIGURE 3. This diagram illustrates the subsystems as defined by

the CNCF (from https://www.cncf.io).

https://www.cncf.io
https://www.cncf.io

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Securing Serverless Applications
	Introduction
	Introducing Cloud Native Computing
	Going Serverless
	The Shrinking Operating System
	The Evolution of Containers in the Cloud

	Security on Serverless Systems
	The Importance of Application Security
	Twistlock
	The Many Benefits of Using Twistlock
	Leveraging Twistlock for a More Secure Cloud Deployment

	The Cloud Native Computing Foundation
	Summary

