

GEEK GUIDE Managing Container Security and Compliance in Docker

2

About the Sponsor ���4
Introduction ���5
Linux Virtualization ��6
Containers ��7
Docker �� 10
Comparing Docker to LXC��� 11
 Process Management ��� 11

 State Management�� 12

 Portability ��� 12

Common Uses �� 12
Orchestration ��� 13
Image Security and Compliance ��� 14
Enter Twistlock �� 15
Design and Implementation ��� 17
 Runtime and Protection �� 19

 Vulnerability Management �� 19

 Continuous Integration ��� 20

 Compliance ��� 20

 Access Control ��� 21

 Analytics ��� 21

Additional Emphasis on Compliance and Security ������������� 22
Summary �� 23

Table of Contents

PETROS KOUTOUPIS is currently a senior software developer at IBM for its Cloud
Object Storage division (formerly Cleversafe). He is also the creator and maintainer
of the RapidDisk Project (http://www.rapiddisk.org). Petros has worked in the data
storage industry for more than a decade and has helped pioneer the many technologies
unleashed in the wild today.

http://www.rapiddisk.org

GEEK GUIDE Managing Container Security and Compliance in Docker

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2017 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE Managing Container Security and Compliance in Docker

4

About the Sponsor
Twistlock

Twistlock protects today’s applications from tomorrow’s

threats with advanced intelligence and machine learning

capabilities. Automated policy creation and enforcement

along with native integration to leading CI/CD tools provide

security that enables innovation by not slowing development.

Robust compliance checks and extensibility allow full control

over your environment from developer workstations through

to production. As the first end-to-end container security

solution, Twistlock is purpose-built to deliver modern security.

GEEK GUIDE Managing Container Security and Compliance in Docker

5

Introduction
In recent years, operating system virtualization has taken

the industry by storm. It allows for minimizing the over-

provisioning of resources and, in turn, re-using them at the

end of the virtual server lifecycle. The idea behind it is a

noble one. Why invest in allocating more server hardware

and not utilize it to its full potential, when instead you can

consolidate it all onto one or a few servers and share their

Managing
Container
Security and
Compliance
in Docker
 PETROS KOUTOUPIS

GEEK GUIDE Managing Container Security and Compliance in Docker

6

resources? In turn, the costs to acquire new hardware,

energy consumption and management are reduced

exponentially. To add to this, most commercial hypervisors

offer additional migration/recovery and high availability

functions (in the event of a failure). It is no surprise that

the technology has become commonplace in the modern

computing industry.

Linux Virtualization
What exactly is virtualization? Virtualization provides

users with a virtualized platform (that is, virtual machine)

that behaves much like physical hardware. When enabled,

you are able to install or execute an instance of a

traditional operating system into this virtual environment,

and it typically would operate as it normally would on

traditional hardware.

Each virtual instance is managed through a hypervisor.

A hypervisor is a piece of computer software that creates,

runs and manages one or more instances of these virtual

machines. The hypervisor typically is referred to as the

host machine, while the virtual machines often are called

guest machines. The hypervisor’s primary role is to translate

all of the virtual hardware resources requested by the guest

machine over to the physical system’s hardware resources.

Not all hypervisors are created equal though. Linux

supports multiple hypervisors, some of which are

commercially developed and supported by software vendors,

and others are developed for and by an open-source

community. The Linux kernel ships with the KVM and Xen

hypervisors. These hypervisors are designed to install and run

GEEK GUIDE Managing Container Security and Compliance in Docker

7

full operating systems and applications not native to the

host machine’s environment. It is pretty far removed from

bare-metal performance and functionality, and it does

introduce a layer of performance degradation as the hypervisor

attempts to map virtual addresses to physical ones.

A secondary method of virtualization is called operating-

system-level virtualization. This is where the hypervisor

executes one or more isolated instance of the host machine.

In Linux, these are called containers.

Containers
Linux Containers (LXC) is about as close to bare metal that

one can get when running virtual machines. It imposes very

little to no overhead when hosting virtual instances. First

introduced in 2008, LXC adopted much of its functionality

from the Solaris Containers (or Solaris Zones) and FreeBSD

jails that preceded it. Instead of creating a full-fledged

virtual machine, LXC enables a virtual environment with its

own process and network space. LXC leverages the kernel’s

very own cgroups functionality to accomplish this. Control

Groups (cgroups) is a kernel feature that limits, accounts for

and isolates the resources used by one or more processes

and limits its access to the the CPU, memory, disk I/O,

Instead of creating a full-fledged virtual
machine, LXC enables a virtual environment
with its own process and network space.

GEEK GUIDE Managing Container Security and Compliance in Docker

8

network and so on. Think of this userspace framework as a

very advanced form of chroot.

So, what are containers? The short answer is that

containers decouple software applications from the

operating system, giving users a clean and minimal

Linux environment while running everything else in one

or more isolated “containers”.

The primary purpose for enabling a container is to

launch a limited set of applications or services (often

referred to as microservices) and have them run within

their own sandboxed environment. This isolation

prevents processes running within a given container from

monitoring or affecting processes running in another

container. Also, these containerized services do not

influence or disturb the host machine. The idea of being

able to consolidate many services scattered across multiple

physical servers into one is one of the many reasons data

centers have chosen to adopt the technology.

Container features include:

n Security: network services can be run in a container,

thus limiting the damage caused by a security breach

or violation. An intruder who successfully exploits a

security hole on one of the applications running in that

container is restricted to the set of actions possible

within that container.

n Isolation: containers allow the deployment of one or

more applications on the same physical machine, even

if those applications must operate under different

GEEK GUIDE Managing Container Security and Compliance in Docker

9

domains, each requiring exclusive access to its

respective resources. For instance, multiple applications

running in different containers can bind to the same

physical network interface by using distinct IP addresses

associated with each container.

n Virtualization and transparency: containers provide the

system with a virtualized environment that can hide

or limit the visibility of the physical devices or system’s

configuration underneath it. The general principle behind

a container is to avoid changing the environment in

which applications are running with the exception of

addressing security or isolation issues.

FIGURE 1. A Comparison of Traditional Virtualization

to Containers

GEEK GUIDE Managing Container Security and Compliance in Docker

10

Docker
In recent years, the term Docker has become quite

commonplace within the data center. But, what is it really?

In the world of technology, the word “docker” can mean

several things—from the company of the same name to a

collection of software tools, to the project those tools are

built around and the community of users and developers

supporting it. However, for the purpose of this guide,

Docker is an Apache-licensed open-source containerization

technology designed to automate the repetitive task of

creating and deploying microservices inside containers.

Docker treats containers as if they were extremely

lightweight and modular virtual machines.

Initially, Docker was built on top of LXC, but it has since

moved away from that dependency, thus resulting in a better

developer and user experience. Much like LXC, Docker

continues to make use of the kernel cgroup subsystem.

The technology is more than just running containers; it

also eases the process of creating containers, building

images, sharing those built images and versioning them.

Some of the features that Docker brings into the

equation include:

n Portability: Docker provides an image-based deployment

model. This type of portability allows for an easier way

to share an application or set of services (with all of their

dependencies) across multiple environments.

n Version control: a single Docker image is made up of

a series of combined layers. A new layer is created

GEEK GUIDE Managing Container Security and Compliance in Docker

11

whenever the image is altered. For instance, a new

layer is created every time a user specifies a command,

such as run or copy. Docker will reuse these layers for

new container builds. Layering to Docker is its very own

method of version control.

n Rollback: again, every Docker image has layers. If you do

not wish to use the current running layer, you can roll

back to a previous version. This type of agility makes it

easier for software developers to integrate and deploy

their software technology continuously.

n Rapid deployment: provisioning new hardware often

can take days. And, the amount of effort and overhead

to get it installed and configured is quite burdensome.

With Docker, you can avoid all of that by reducing

the time it takes to get an image up and running to a

matter of seconds. When you are done with a container,

you can destroy it just as easily.

Comparing Docker to LXC
Fundamentally, both Docker and LXC are very similar. They

both are userspace and lightweight virtualization platforms

that implement cgroups and namespaces to manage

resource isolation. However, there are a number of distinct

differences between the two.

Process Management Docker restricts containers to run

as a single process. If your application consists of X number

of concurrent processes, Docker will want you to run X

number of containers, each with its own distinct process.

GEEK GUIDE Managing Container Security and Compliance in Docker

12

This is not the case with LXC, which runs a container with

a conventional init process and, in turn, can host multiple

processes inside that same container. For example, if you

want to host a LAMP (Linux + Apache + MySQL + PHP)

server, each process for each application will need to span

across multiple Docker containers.

State Management Docker is designed to be stateless,

meaning it does not support persistent storage. There are

ways around this but, again, only necessarily when the

process requires it. When a Docker image is created, it will

consist of read-only layers. This will not change. During

runtime, if the process of the container makes any changes

to its internal state, a diff between the internal state

and the current state of the image will be maintained until

either a commit is made to the Docker image (creating a

new layer) or until the container is deleted, resulting in

that diff to disappear.

Portability This word tends to be overused when

discussing Docker—that’s because it is the single most

important advantage Docker has over LXC. Docker does

a much better job of abstracting away the networking,

storage and operating system details from the application.

This results in a truly configuration-independent application,

guaranteeing that the environment for the application

always will remain the same, regardless of the machine on

which it is enabled.

Common Uses
Docker is designed to benefit both developers and system

administrators. It has made itself an integral part of many

GEEK GUIDE Managing Container Security and Compliance in Docker

13

DevOps (developers + operations) toolchains.

Developers can focus on writing code without having

to worry about the system ultimately hosting it. With

Docker, there is no need to install and configure complex

databases or worry about switching between incompatible

language toolchain versions. Docker gives the operations

staff flexibility, often reducing the number of physical

systems needed to host some of the smaller and more basic

applications. Docker streamlines software delivery. New

features and bug/security fixes reach the customer quickly

without any hassle, surprises or downtime.

Orchestration
On its own, Docker is extremely simple to use, and

running a few images simultaneously also is just as easy.

Now, scale that out to hundreds, if not thousands, of

images. How do you manage that? Eventually, you need

to step back and rely on one of the few orchestration

frameworks specifically designed to handle this problem.

Enter Kubernetes and Swarm.

Kubernetes originally was developed by Google.

It is an open-source platform that also automates

container operations. Google was an early adopter and

contributor to the Linux Container technology. In fact,

it is Linux Containers that powers Google’s very own

Cloud services. Anyway, Kubernetes eliminates all of the

manual processes involved in the deployment and scaling

of containerized applications. It is capable of clustering

together groups of servers hosting Linux Containers

while also allowing the administrator to manage those

GEEK GUIDE Managing Container Security and Compliance in Docker

14

clusters easily and efficiently.

Docker’s very own version of this platform is called

Swarm. It accomplishes much of the same tasks and

boasts a lot of the same features. The primary difference

between the two though is that Swarm is centralized

around the use of Docker, while Kubernetes tends to

adopt a more generalized container support model.

Sometimes production applications will span across

multiple containers, and those containers may be

deployed across multiple physical server machines. Both

Kubernetes and Swarm give you the orchestration and

management capabilities required to deploy and scale

those containers to accommodate the always changing

workload requirements.

Image Security and Compliance
Although Docker brings security to running applications

in a shared environment, containers alone are not an

alternative to taking proper security measures. Unlike

traditional hypervisors, a container can have a more

direct path to the host operating system’s kernel, which is

why it is standard procedure to drop privileges as quickly

as possible and run all the services as non-root wherever

possible. Also, whenever a containerized process requires

access to the underlying filesystem, you should make it a

good habit of mounting that filesystem as read-only.

One of the biggest concerns with Docker is that it has

become quite easy to download and run any random

Docker image found on the internet. Not all of those

sources should be trusted. When running unknown

GEEK GUIDE Managing Container Security and Compliance in Docker

15

or unofficial images, you increase the risk of running

vulnerable or buggy code in your environment. And if

your container is hosting a privileged process, any attack

exposing a potential vulnerability eventually could own

the entire host system. This is why you need to download

those images from a trusted repository or build and

maintain your very own. These trusted sources typically

will apply security updates to patch vulnerabilities. They

also will have a team of software engineers working

tirelessly not only to integrate security enhancements

but also to manage and maintain the packages within

that image. I can’t stress this enough: run Docker images

from trusted parties only.

There also exists the potential for a Docker container

to run system binaries that it probably shouldn’t

be touching in the first place, at least without your

knowledge. Another similar scenario is when a rogue

application or attacker gains container access through

an application vulnerability and replaces some of the

underlying system binaries with one that does not belong

or was not intended to run in that Docker image—all

of which will continue to run during the life of that

container. This can result in additional system and

network compromises or worse.

Enter Twistlock
Hope is not lost. There are solutions intended to prevent

such things from ever occurring. Twistlock is one such

software vendor providing that type of solution. Twistlock

develops and distributes a product of the same name

GEEK GUIDE Managing Container Security and Compliance in Docker

16

focusing on securing cloud-native apps and container

environments. I also appreciate the play on words here:

a “twistlock” is a rotating connector used for securing

shipping containers.

Twistlock offers the first end-to-end security solution

built for containerized environments. It protects against

software exploits, malware and active threats by

automatically creating predictive models that associate

every image with an intent. These models are deduced

using a combination of static analysis and machine

learning capabilities. Twistlock then plugs into each phase

of the container lifecycle, starting with development,

through to deployment, and into runtime. Twistlock’s

early lifecycle tools are important because it makes

security a priority, rather than an afterthought during

the development process. After a container is deployed,

Twistlock ensures your containers remain secure, so

that even as time passes, and new threats emerge, they

remain resistant to attack.

Twistlock sources more than 30 vulnerability and threat

feeds, combining it with its proprietary research. This

ensures that Twistlock’s customers are kept updated,

in real time, on all known application CVEs (Common

Vulnerabilities and Exposures), exploits and threats.

Twistlock offers the first end-to-end security
solution built for containerized environments.

GEEK GUIDE Managing Container Security and Compliance in Docker

17

Design and Implementation
Think of Twistlock as a tool to both harden your images

in development and protect them against runtime

threats. Twistlock is built as a Docker image and runs

as a privi leged container image on top of the Docker

Engine. The idea is to run a single instance of this

Twistlock image on every physical or virtual machine

hosting Docker containers.

Each instance of Twistlock can be managed from the

Twistlock Console. Through this very same console, you

can create/remove security policies, establish image

compliance and also monitor the security state of

each running container. If that container surpasses the

defined threshold of vulnerabil it ies or does not comply

to the parameters you have set, Twistlock either wil l

FIGURE 2. A General Overview of Twistlock

GEEK GUIDE Managing Container Security and Compliance in Docker

18

prevent that container from running or disconnect it

completely from the network.

The Twistlock Intelligence Stream is a live feed that is

delivered to your installation. It is updated several times

a day and contains the latest threat data (CVEs, malware

checksums, malicious endpoints and zero-day defects).

An additional feature supported by Twistlock is its

abil ity to scan through all the running containers’

images and build a database storing the checksums

of each packaged execution binary and library. If

Twistlock detects that a fi le has been altered, it wil l

f lag that container and take the proper course of action

to prevent it from disrupting other services or from

FIGURE 3. The Twistlock Management Console

GEEK GUIDE Managing Container Security and Compliance in Docker

19

wreaking havoc on the system.

Much like any other Docker image, a Twistlock Docker

image can be managed and deployed through the same

orchestration frameworks discussed earlier: Kubernetes

and Swarm. Twistlock also features a RESTful Application

Program Interface (API) to manage various aspects of

the Twistlock ecosystem from another framework or an

external application.

Twistlock is broken down to handle the following actions.

Runtime Protection Remember, Twistlock’s runtime

defense protects your containers against detected exploits,

compromises, application flaws and configuration errors.

It actively monitors container activities and detects policy

violations. Twistlock will report all anomalous behaviors

while also taking the appropriate actions to disconnect or

isolate them.

Twistlock automatically creates predictive models that

associate every image with an intent. These models are

built using a combination of static analysis and machine

learning. With these models, Twistlock can identify when

a container does something that it shouldn’t be doing.

Sensors enforce the model and take action when the

model is breached. For example, the process sensor can

detect when a container that runs nginx suddenly runs

netstat. The model says that netstat isn’t a whitelisted

process in an image that is built to load-balance web

traffic, and the anomaly could indicate an emerging threat.

Vulnerability Management Twistlock is constantly

scanning container images in registries, workstations and

servers for known vulnerabilities and misconfigurations.

GEEK GUIDE Managing Container Security and Compliance in Docker

20

I mentioned earlier that Twistlock aggregates this

information from multiple external and internal sources.

All detected vulnerabilities are reported and extend

across Linux distributions (Debian, Ubuntu, Fedora),

application frameworks (Node.js, Python, Java) and even

your custom application packages. Twistlock breaks the

Docker image apart and parses each individual layer,

specifically searching for these threats. Twistlock can and

will take remediation actions based on the severity of the

vulnerability during runtime.

Twistlock provides users with granular control when

managing the types of vulnerabilities beyond their

severity ratings. You can block individual CVEs explicitly

while ignoring others.

Continuous Integration Twistlock was written to

integrate directly into your Continuous Integration (CI)

process (such as Jenkins). This way, it can find and report

problems before they ever make it out into production.

In some cases, when a package with an open CVE is

reported, Twistlock also will report the package version

that has the fix. Developers are given clear insight into

the vulnerabilities present in every build. These plugins

allow you to define and enforce your vulnerability policies

at build time. For instance, you can set a policy requiring

that one build job must not have any vulnerability, or you

can flag specific CVEs while ignoring the rest.

Compliance The Center for Internet Security (CIS)

Docker Benchmark provides guidance for establishing

a secure configuration of a Docker container. In short,

this benchmark provides the best security practices for

GEEK GUIDE Managing Container Security and Compliance in Docker

21

deploying Docker. Twistlock has developed 80+ built-in

checks to validate the recommended practices from

this benchmark. In parallel to this, Twistlock includes

an extensive list of configuration checks for the host

machine, Docker dæmon, Docker files and directories.

Organizations using Twistlock will be able to enforce

Trusted Registries (containing images approved by

Twistlock) and Trusted Images. When configured,

Twistlock can enforce that the images from these trusted

lists are the only ones deployed onto production servers.

Access Control Using Twistlock, you can define and

enforce policies governing user access to both Docker

and Kubernetes resources, limiting specific users to

individual functions or APIs. Out of the box, Twistlock

supports enterprise identity directories that include Active

Directory, OpenLDAP and SAML providers. This way, you

can specify access policies to container resources without

the need to create new identities and groups. You can

monitor detailed user access audit trails, action types,

services requested and more from the console.

Analytics Twistlock’s built-in analytics allow you to

visualize all relevant data and enable you to enforce standard

Using Twistlock, you can define and enforce
policies governing user access to both
Docker and Kubernetes resources, limiting
specific users to individual functions or APIs.

GEEK GUIDE Managing Container Security and Compliance in Docker

22

configurations, container best practices and recommend

deployment templates. This way, your containers will remain

compliant to industry or company policies.

All data (audit events) are made available via open

formats (CSV) and APIs (JSON). This makes it easier for

you to import Twistlock data into the log analytics tools

you may be currently using (such as IBM’s QRadar, HP’s

ArcSight, Datadog, Sumo Logic and Splunk).

Additional Emphasis on Compliance
and Security
The National Institute of Standards and Technology

(NIST) is a nonregulatory agency of the United States

Department of Commerce. NIST is a measurement

standards laboratory created with the sole mission

of promoting both innovation and industrial

competitiveness. One such standard defined by NIST

is the Health Insurance Portability and Accountability

Act (HIPAA). The HIPAA Security Rule establishes

national standards to protect an individual’s electronic

personal health information that is created, received,

used or maintained by a covered entity. It requires

that appropriate administrative, physical and technical

safeguards are in place to ensure the confidentiality,

integrity and security of that individual’s electronic-

protected health information.

There is also the Payment Card Industry Data Security

Standard (PCI DSS) administered by the Payment Card

Industry Security Standards Council. This standard is

intended for organizations handling branded credit cards

GEEK GUIDE Managing Container Security and Compliance in Docker

23

from the major card schemes including Visa, MasterCard,

American Express and Discover, and it was created to

increase controls around cardholder data to reduce

credit-card fraud.

This is yet another area where Twistlock truly shines by

providing its users with a complete guide to configure the

Docker container images in compliance with the HIPAA

Security Rule and PCI Security Standards. Twistlock is also

compliant with the recommendations from the recently

published NIST Application Container Security Guide

(http://csrc.nist.gov/publications/drafts/800-190/sp800-

190-draft.pdf). This guide details the security benefits

and concerns associated with container technologies.

Summary
Although containers themselves provide you with a more

secure model in their implementation of application

isolation, it is often not enough to rid yourself of

the common security concerns plaguing all published

software unleashed in the wild. Containers allow teams

to move faster and deliver more innovation, but it is a

Herculean task to keep up with the pace and continually

update security policies and check for exposure to the

latest vulnerabilities. Twistlock eliminates the manual

processes and will let you know which applications and

which containers are affected by those vulnerabilities

while also ensuring that misbehaving containers,

unauthorized images, unauthorized users and rogue

processes are always kept at bay.n

http://csrc.nist.gov/publications/drafts/800-190/sp800-190-draft.pdf
http://csrc.nist.gov/publications/drafts/800-190/sp800-190-draft.pdf

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Managing Container Security and Compliance in Docker
	Introduction
	Linux Virtualization
	Containers
	Docker
	Comparing Docker to LXC
	Process Management
	State Mangement
	Portability

	Common Uses
	Orchestration
	Image Security and Compliance
	Enter Twistlock
	Design and Implementation
	Runtime Protection
	Vulnerability Management
	Continuous Integration
	Compliance
	Access Control
	Analytics

	Additional Emphasis on Compliance and Security
	Summary

