

GEEK GUIDE f Calculating the ROI of DevSecOps

2

About the Sponsor ..4

Introduction ..5

DevSecOps ...6

Why DevSecOps? ..6

Containers ..9

The Benefits of Continers ..9

Container Adoption ..11

Container Security Considerations ..14

A Return on Investment? ..15

Where Does the Money Go? ..16

Bringing the Sec to DevSecOps19

Summary ...23

Table of Contents

GEEK GUIDE f Calculating the ROI of DevSecOps

3

GEEK GUIDES:
Mission-critical information for the most technical people on
the planet.

Copyright Statement
© 2019 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed or

commissioned by, and published with the permission of, Linux Journal (the “Materials”),

and this site and any such Materials are protected by international copyright and

trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

TITLE AND NON-INFRINGEMENT. The Materials are subject to change without

notice and do not represent a commitment on the part of Linux Journal or its Web site

sponsors. In no event shall Linux Journal or its sponsors be held liable for technical

or editorial errors or omissions contained in the Materials, including without limitation,

for any direct, indirect, incidental, special, exemplary or consequential damages

whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio and/or

video) may be copied, reproduced, republished, uploaded, posted, transmitted or

distributed in any way, in whole or in part, except as permitted under Sections 107

& 108 of the 1976 United States Copyright Act, without the express written consent

of the publisher. One copy may be downloaded for your personal, noncommercial

use on a single computer. In connection with such use, you may not modify or

obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the

property of third parties. You are not permitted to use these trademarks, services

marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent & Trademark

Office. All other product or service names are the property of their respective owners. If

you have any questions about these terms, or if you would like information about licensing

materials from Linux Journal, please contact us via e-mail at info@linuxjournal.com.

GEEK GUIDE f Calculating the ROI of DevSecOps

4

About the Sponsor

Palo Alto Networks’ mission is to protect our way of life in the

digital age by preventing cyberattacks with our pioneering Security

Operating Platform, providing highly effective cybersecurity in the

cloud, across networks, and for mobile devices.

GEEK GUIDE f Calculating the ROI of DevSecOps

5

Introduction
In the beginning came DevOps. By streamlining both

Software Development and IT Operations, it merged

two extremely important roles to deliver software

effectively and efficiently. The DevOps role shortened the

development l ifecycle to deliver vital bug fixes, software

updates and much needed features quickly. DevOps

reduced the bottleneck of the entire process with the

exception of one key component: security.

Calculating
the ROI of
DevSecOps
 PETROS KOUTOUPIS

GEEK GUIDE f Calculating the ROI of DevSecOps

6

DevSecOps
DevSecOps expands beyond the practice of DevOps

by introducing the practice and mindset of security into

the process. Its primary goal is to distribute security

decisions safely at the necessary speed and scale while

not sacrificing the required security. Remember, DevOps is

centered around development and operations. If you need

to take advantage of both the agility and responsiveness

that DevOps offers, security needs to play a role in the

software lifecycle.

Why DevSecOps? Typically, security becomes an

afterthought in the software development/delivery lifecycle,

and it’s often pushed off to the final stages of the process.

Before the DevOps concept emerged, when the entire

process consumed many months to even years, this was

not considered problematic. Now that more companies have

adopted Continuous Delivery/Continuous Integration (CD/CI)

models, releases tend to occur a lot more frequently. I’m

talking about weeks, if not days, before a new revision of an

application drops into the public domain. Waiting until the

very last minute to ensure that the application is safe and

secure to deploy destroys the entire process and potentially

could derail the delivery of the application. What could have

been a few weeks, might end up being a few months of

development, testing and integration.

What does DevSecOps look like? Basically with

GEEK GUIDE f Calculating the ROI of DevSecOps

7

DevSecOps, security is designed into the application or

feature at the onset of the process. A good strategy is

to determine risk tolerance and conduct a risk analysis

of a given feature. How much security are you willing to

provide the feature? And how consistent are you going

to be with that requirement throughout the lifecycle of

that same feature? Now, what happens when you scale

that model across multiple features, sometimes being

worked on simultaneously? Automation certainly will help

out a lot here. Ideally, this automation would maintain

short and frequent development models while also

integrating your security measures with minimal to no

disruptions to your operations.

DevSecOps introduces many other advantages, including

but not limited to the following:

n	 Increased speed and agil ity for security teams.

n	 Decreased response time to address change and needs.

n	 Increased or better collaboration and communication

across teams.

n	 Increased opportunities for automated builds and

quality assurance testing.

n	 Early identification of vulnerabilities in application code.

GEEK GUIDE f Calculating the ROI of DevSecOps

8

n	 Resources and talent are freed to work on

high-value work.

DevSecOps is a critical component in markets where

software updates already are performed multiple times a

day. Older security models just cannot keep up.

The six most important components that make up the

DevSecOps approach are:

1. The ability to deliver code in small chunks so

vulnerabilities are identified quickly.

2. Increased speed and efficiency to source code

management, determining whether a recently submitted

change is good or bad.

3. Being in a constant state of compliance (that is,

audit-ready).

4. The ability to identify potential emerging threats with every

code update and then being able to respond quickly.

5. The ability to identify new vulnerabilities with code

analysis and then being able to understand how to

respond and patch the affected code.

6. Always being up to date with training engineers on

GEEK GUIDE f Calculating the ROI of DevSecOps

9

security guidelines for set routines.

Some may argue that the “security” piece is nothing more

than a mindset or philosophy. Even if that were the case,

a large part of the challenge is identifying risks early on

and using the right tools to guide you through the entire

process—from the very beginning to the very end.

Containers
Containers and container technologies have redefined the

way many organizations conduct business. The technology

brings unprecedented agility and scalability. It should

come as no surprise that container technologies are widely

adopted and continue to thrive in the wild. They even form

the foundations to many of the cloud native, mobile and

cross-platform applications that we take for granted today.

Knowing this, it does raise the question, how can you be

sure that each deployment is safe and secured?

The Benefits of Containers To recap, containers decouple

software applications or services (often referred to as

microservices) from the operating system, which gives users

a clean and minimal Linux environment while running the

desired application(s) in one or more isolated “containers”.

Containers were and still are an ideal technology for the

ability to isolate processes within a respective container.

This process isolation prevents a misbehaving application in

one container from affecting processes running in another

GEEK GUIDE f Calculating the ROI of DevSecOps

10

container. Also, containerized services are designed not to

influence or disturb the host machine.

Another key feature of containers is portability. This is

typically accomplished by abstracting away the networking,

storage and operating system details from the application,

resulting in a truly configuration-independent application,

guaranteeing that the application’s environment always will

remain the same, regardless of the machine on which it is

enabled. With an orchestration framework behind it, one

or more container images can be deployed simultaneously

and at scale.

Containers are designed to benefit both developers and

system administrators. The technology has made itself

an integral part of many DevOps toolchains. Developers

can focus on writing code without having to worry about

the system ultimately hosting it. There is no need to

install and configure complex databases or worry about

switching between incompatible language toolchain

versions. Containers streamline software delivery and give

the operations staff flexibility, often reducing the number of

physical systems needed to host some of the smaller and

more basic applications.

The beauty of containers is that they are completely

platform-agnostic. As a result of their portability, they can

be deployed on-premises in local data centers or out in the

GEEK GUIDE f Calculating the ROI of DevSecOps

11

cloud. Under the same management framework, they can

be managed and monitored seamlessly across both hybrid

and multi-cloud environments. You even can run containers

within virtual machines or serverless in cloud native

applications. The possibilities are endless.

Container Adoption According to a 2018 survey conducted

by the Gartner research firm, by the year 2020, more than

50% of the IT organizations that were surveyed will be using

container technologies. This is up from less than 20% in

the 2017 survey. Without a doubt these and many other

organizations are seeing the value in using containers.

In addition, a 2017 Forrester report, “Containers: Real

Adoption and Use Cases in 2017”, commissioned by Dell

EMC, Intel and Red Hat, revealed that of the 195 US/

European managers or IT decision-makers responsible

for public/private cloud decisions surveyed, at least 63%

used containers with more than 100 instances deployed.

That number was projected to grow in the coming years.

The very same survey listed “security” as the number one

roadblock to container technology deployment (37%).

Think about it. A “build once, run everywhere” application

can be affected (alongside the many other container

applications) by an infected or vulnerable kernel hosting

it. It also can be affected by the applications and libraries

it’s packaged with. This would not be the case in a virtual

GEEK GUIDE f Calculating the ROI of DevSecOps

12

machine, as the application would be fully isolated from

the other(s). And now that more workloads have moved

to the cloud, where organizations have less control over

the system(s) hosting their containers and cloud native

applications, this becomes more of a risk.

What’s driving this adoption?

A Portworx “2018 Container

Adoption Survey” may provide

the answer. Out of the 519 IT

professionals that were surveyed,

nearly 82% were already running

container technologies, and 84%

of those who were running them

were running them in production.

And of those, 30.2% claimed it

was to enable their applications

to run on multiple cloud platforms

and to avoid vendor lock-in. The

rest stated that it was to increase

developer efficiency (32.3%),

save on their infrastructure costs

(25.9%) and support microservices architectures (11.6%).

For those hosting their containers in the cloud, 12.8% were

running them in three separate clouds (Google + Azure +

AWS), while 22.5% were running them in two clouds (AWS +

Google, Google + Azure or Azure + AWS).

FIGURE 1. IT Professionals

Already Using Container

Technologies

GEEK GUIDE f Calculating the ROI of DevSecOps

13

FIGURE 2. Reasons for Using Containers

FIGURE 3. Single or Multicloud Deployments of Containers

GEEK GUIDE f Calculating the ROI of DevSecOps

14

Container Security Considerations Although container

technologies bring an added layer of security for running

applications in an isolated environment, containers alone are

not an alternative to taking proper security measures. Unlike

traditional hypervisors, a container can have a more direct

path to the host operating system’s kernel, which is why it is

standard procedure to drop privileges as quickly as possible

and run all the services as non-root wherever possible. Also,

note that whenever a containerized process requires access

to the underlying filesystem, you should make it a good habit

of mounting that filesystem as read-only.

The state of a container image also raises concern, which

is why it’s improper to run containers (be it Docker or

anything else) from an untrusted source. When deploying

an unknown or unofficial image, you increase the risk of

running vulnerable or buggy code in your environment.

And if that container is configured to host a privileged

process, any attack exposing a potential vulnerability

eventually could cost the data center an entire host system

(and maybe more).

There also exists the potential for a container to run system

binaries that it probably shouldn’t be touching in the first

place, at least without your knowledge. Another similar

scenario is when a rogue application or attacker gains

container access through an application vulnerability and

replaces some of the underlying system binaries with one

GEEK GUIDE f Calculating the ROI of DevSecOps

15

that does not belong or was not intended to run in that

container image—all of which will continue to run during the

life of that container. This can result in additional system

and network compromises or worse.

Having the right tools to enable the Sec in DevSecOps

will go a long way and can potentially save your firm or

your customer tons of hours of headache (and downtime),

and in turn, lots of dollars to repair the damage done.

Damage is not confined only to software or data. It can

also destroy reputation.

A Return on Investment?
Costs are one of the key factors to container adoption. At

least, that’s what 37% of respondents stated according

to the Survata “Container Adoption and Drivers” survey

conducted in 2016. Another 21% cited the increase in

frequency of software releases. Regardless of how you

look at it, the main takeaway is a decrease in spending and

increase in profit.

Clearly, if it were not for the many benefits, industries would

not be deploying container technologies. Such benefits

cited in the same survey include improved flexibility for

IT infrastructure (63%), overall IT cost savings (53%),

increased speed/productivity for developers deploying code

(52%), greater responsiveness to business needs (40%) and

more ROI from the cloud (38%).

GEEK GUIDE f Calculating the ROI of DevSecOps

16

At the time, two-thirds of IT professionals expected

their company to save at least 16% on IT costs by using

containers, while one-fifth indicated that their savings would

exceed 30%.

Where Does the Money Go? At the end of the day, the initial

investment into building a container-friendly infrastructure

can be quite expensive. Costs include the following:

n	 Commercially supported and managed container products.

n	 The hardware servers, storage, network switches and

so forth.

n	 Container orchestration/management tools (to enable

multi-cloud or hybrid clusters).

n	 The hardware and software to support and manage the

image registry.

n	 Experienced personnel to manage/maintain and even

consult or design the services around containers.

I’m talking about an up-front Capex with an ongoing Opex

here, much like any other technology deployment inside the

data center. Either way, it’s important to assess the ROI for

these Capex and Opex charges.

GEEK GUIDE f Calculating the ROI of DevSecOps

17

Digging deeper into the key aspects of a container-friendly

infrastructure, you need to consider the following aspects

of containers:

n	 Runtime engine: the runtime engine operates and

manages (for example, clone, suspend and snapshot)

the deployed container. Often, you will find container

runtime engines included in modern operating system

distributions and virtualization platforms.

n	 Image repository: an image repository will provide a

single location for container image distribution. It also

will provide long-term storage and version control for

those same container images.

n	 Orchestration framework or workload manager: a

container management system (such as Kubernetes,

OpenShift, Rancher and so on) will automate the

deployment of container images across multiple hosts,

balance workloads across those systems, restart

containers on crashes and provision additional copies of

a container to handles increased application usage.

n	 Virtual network overlay: to enable inter-container

communication, you must enable a virtual network

overlay over shared physical network interfaces.

n	 Hardware infrastructure: one of the most important

GEEK GUIDE f Calculating the ROI of DevSecOps

18

pieces to building a container-friendly infrastructure

is provisioning and configuring the right amount of

hardware with the right amount of horsepower and

enough room for expansion or growth. At the end

of the day, no matter how abstracted a container is

from the underlying hardware, the application itself

must eventually be deployed on physical (or virtual)

machines—that is, servers, switches and storage

systems to hold the persistent application data. These

workloads can live on-premises, in one or more public

clouds or both, which leads to a significant investment

in meta-management tools to manage those same

workloads across multiple disparate platforms.

n	 Support and expertise: various elements are required

to run production-scale container deployments. And

although the previous sections of this ebook cover a

large portion of the upfront costs involved in deploying

container technologies either locally, in the cloud or

both, there will be a time when you need to make an

investment on the operations piece to support the

infrastructure, and finding the talent to maintain or debug

said infrastructure can be a challenge all on its own.

Most organizations tend to seek consultants or vendor

professional services to assist with container strategies,

architectural design, implementation and support.

Once you make all the investments to define, implement,

GEEK GUIDE f Calculating the ROI of DevSecOps

19

secure and support a container-ready infrastructure

properly, ROI will immediately follow. The amount of

time it takes for a return on that investment is reduced

further once you enable the security piece of DevSecOps.

It’s simple. The less resources spent on investigating,

debugging and addressing production code, the less money

spent in general.

Bringing the Sec to DevSecOps
Now, what do you look for to add security to your

DevOps ecosystem? You’ll need a product that focuses

on container security across an application’s l ifecycle—

FIGURE 4. The Kubernetes Web UI Dashboard Source: kubernetes.io

GEEK GUIDE f Calculating the ROI of DevSecOps

20

one that’s fully committed to providing enterprise security

with DevSecOps agil ity and able to integrate with any

modern CI tool or registry. It also should be designed to

be deployed alongside your virtual machines, containers

and cloud native applications.

I’m talking about an end-to-end security solution built for

containerized environments that protects against software

exploits, malware and active threats through its advanced

intelligence and machine-learning capabilities. One that

will profile expected container behavior automatically, and

create and enforce security models at runtime. The goal

would be to build security models of expected behavior and

enforce them automatically via whitelisting. Ideally, security

can be introduced much earlier in the development lifecycle

to identify and block threats from developer workstations

through to production.

The following are some key features to look for:

n	 Runtime protection: defends your containers against

detected exploits, compromises, application flaws and

configuration errors, and actively monitors container

activities and detects policy violations. With reporting of

all anomalous behaviors while also taking the appropriate

actions to disconnect or isolate them, runtime protection

prevents disruption to any and all other containers

across the Kubernetes cluster (or other workload

GEEK GUIDE f Calculating the ROI of DevSecOps

21

manager). The solution should identify when a container

does something it shouldn’t be doing. For instance, if a

container running nginx suddenly invokes netstat, and

netstat isn’t a whitelisted process for that image, the

security platform should detect it.

n	 Vulnerability management: constant scanning of

container images in registries, workstations and servers

for known vulnerabilities and misconfigurations is a

must with detected vulnerabilities being reported. How

nice would it be to break the Docker image apart and

parse each individual layer, specifically searching for

these threats? The platform would take remediation

actions based on the severity of the vulnerability during

runtime and provide users with granular control when

managing the types of vulnerabilities beyond their

severity ratings. You can block individual CVEs explicitly

while ignoring others.

n	 Continuous integration: to integrate directly into your

CI process (such as Jenkins). This way, it can find and

report problems before they ever make it into production.

In some cases, when a package with an open CVE is

reported, it would be an excellent feature to receive a

report with the package version that has the fix, giving

developers clear insight into the vulnerabilities present in

every build. These plugins should allow you to define and

enforce your vulnerability policies at build time.

GEEK GUIDE f Calculating the ROI of DevSecOps

22

n	 Compliance: the Center for Internet Security (CIS)

Docker and CIS Kubernetes Benchmarks provide

guidance for establishing a secure configuration of a

Docker container. In short, this benchmark provides

the best security practices for deploying Docker.

Having a solution with built-in checks to validate the

recommended practices from this benchmark is another

must. In parallel to this, the solution should include

an extensive list of configuration checks for the host

machine, Docker dæmon, Docker files and directories.

Organizations would be able to enforce Trusted

Registries and Trusted Images. And when configured, it

should enforce that the images from these trusted lists

are the only ones deployed on production servers.

n	 Cloud native firewalls: as workloads move to hybrid

or cloud deployments, you’ll need a platform to enable

security teams to move beyond the manual management

of whitelisted IP addresses by offering firewalls for cloud

native environments—that is, having both layer 3 and

layer 7 firewalls that automatically learn the network

topology of your applications and provide application-

tailored microsegmentation for all of your microservices.

n	 Access control: the ability to define and enforce

policies governing user access to both container and

workload management resources, limiting specific users

to individual functions or APIs. This allows you to specify

GEEK GUIDE f Calculating the ROI of DevSecOps

23

access policies to container resources without the need

to create new identities and groups. You can monitor

detailed user access audit trails, action types, services

requested and more from the console.

n	 Analytics: to visualize all relevant data and enable you

to enforce standard configurations, container best

practices and recommend deployment templates. This

way your containers will remain compliant to industry or

company policies.

Summary
DevSecOps is a natural and necessary response to the

bottleneck effect introduced by older security models layered

on top of modern CD pipelines. Its goal is to bridge the

gap between IT and security while also ensuring fast and

safe delivery of code. It is meant to address the security

concerns in every phase of the development lifecycle. As

more organizations rely on containerized applications to keep

operations up and running, security efforts outside traditional

methods are crucial to prevent costly downtimes. n

PETROS KOUTOUPIS, LJ Editor at Large, is currently a senior performance

software engineer at Cray for its Lustre High Performance File System division.

He is also the creator and maintainer of the RapidDisk Project. Petros has

worked in the data storage industry for well over a decade and has helped

pioneer the many technologies unleashed in the wild today.

